東北地方における RC床版の耐久性確保の手引き(案)

【巻末資料】

2023年 改訂版

令和5年3月

国土交通省 東北地方整備局 道路部

目次

W 1/1		٠.	414.1	-
7	ᆂ	沓	W.11	- 1
	木		太江	

1	. 配合検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	(1) S S W試験コンクリートバー法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	(2) 熱膨張係数試験の方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	(3)配合検討等における各種試験内容の例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
2	ひび割れ抑制・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
	(1)温度応力解析の例(単純鋼鈑桁橋(フライアッシュ))・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
	(2)橋梁形式毎の床版ひび割れ指数(代表的な形式による解析事例)・・・・・・	33
	(3) 段階施工による応力解析の事例①(鋼7径間連続鋼箱桁橋)・・・・・・・	38
	(4) 段階施工による応力解析の事例②(鋼2径間連続鈑桁橋)・・・・・・・・	51
3	3. 試験施工、および施工計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	62
	(1) N式貫入試験の試験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	62
	(2) N式貫入試験による仕上げ時間等の設定例①(鋼単純鈑桁橋)・・・・・・・	65
	(3) N式貫入試験による仕上げ時間等の設定例②(鋼単純鈑桁橋)・・・・・・・	66
	(4) 床版防水プライマーの建研式引張接着試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
	(5)模擬床版試験施工計画の事例①(鋼単純鈑桁橋)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
	(6)模擬床版試験施工計画の事例②(鋼4径間連続箱桁橋)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	82
	(7) 床版の施工計画の例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
	(8) 床版コンクリートの橋面仕上げの留意点・・・・・・・・・・・	114
	(9) 寒中コンクリートの養生計画の事例(鋼2径間連続鈑桁橋)・・・・・・	122
((10)橋面防水工(流し貼り型シート系防水)施工上の留意点・・・・・・・	129
4	- 記録様式・・・・・・・・・・・・・・・・・・・・・・・・	168
	(1) コンクリートの打込み管理表・・・・・・・・・・・・・	168
	(2)打重ね管理表・・・・・・・・・・・・・・・・・・・・	171
	(3)表層透気試験記録・・・・・・・・・・・・・・・・・・	172
	(4)表面吸水試験記録・・・・・・・・・・・・・・・・・・	173
	(5)ひび割れ調査票・・・・・・・・・・・・・・・・・・・	174
	(6) コンクリートの配合表・・・・・・・・・・・・・・・・	179
	(7)受入れ検査の記録・・・・・・・・・・・・・・・・・・	180
	(8)打込み、および養生方法の記録・・・・・・・・・・・・・・・	181

1-(1). SSW 試験コンクリートバー法

コンクリートのアルカリシリカ反応性判定試験方法(JCI-AAR-3)において、供し体を包む保水紙に含ませる真水を20%NaC1水溶液に代えた試験

コンクリートのアルカリシリカ反応性判定試験方法(案) コンクリート法(JCI AAR-3)

1. 適用範囲

この試験方法は、コンクリート供試体の長さ変化を測定することにより、任意の配(調)合の コンクリートが、アルカリシリカ反応性を有するか否かを判定する試験に適用する。ここでいう、 コンクリートのアルカリシリカ反応性とは、コンクリートにおいて将来アルカリシリカ反応によ る有害な膨張やひびわれが生じることである。

〈解説〉(一部省略)

コンクリートのアルカリシリカ反応性をより正しく判定するには、実際のコンクリートに用いられる材料と配(調)合に基づいてコンクリート供試体を作製し、判定試験を実施することが望ましい。ここに規定するコンクリート法は、任意の配合のコンクリートのアルカリシリカ反応性を判定するための試験法である。ただし、このコンクリート法は、結果の判定をできるだけ早期に行うため、アルカリの添加と、温度 40 \mathbb{C} 、湿度 100%の反応促進条件を採用した。

2. 試験用器具

2.1 型枠

供試体作製用型枠は、 $100 \text{ mm} \times 100 \text{ mm} \times 400 \text{ mm}$ または $75 \text{ mm} \times 75 \text{ mm} \times 400 \text{ mm}$ の供試体の作製が可能な型枠で、両端に長さ変化用ゲージプラグを埋め込めるようにゲージプラグ固定用の穴をあけたものとする。

2.2 長さ変化測定器具

長さ変化の測定は、JIS A 1129 に規定するダイヤルゲージ方法による。ダイヤルゲージは JIS B 7503 の 0.01 mm 目盛り (精度) のものを使用する。

2.3 ゲージプラグ

ゲージプラグは、供試体の長軸方向の両端部中央に埋め込む形式で、試験中に腐食しない金属 製のものとする。

2.4 供試体被覆材

供試体を被覆する保水性の高い保水紙は、それぞれの供試体の表面が被覆できる大きさを持ち、 試験中にアルカリに侵されて品質が低下しない材質のものとする。保水紙で被覆された供試体を 包む鋼袋は、伸縮性を持ち、試験中にアルカリに侵されないものとする。保水紙および鋼袋で被 覆された供試体の水分の蒸発を防止するためのポリエチレン製の袋は、供試体全面を収納し、か つ供試体の重量に耐える厚さを持ち、密閉可能な寸法を有するものとする。

〈解説〉(2.2, 2.3 に対する解説省略)

2.3 供試体の表面を常に湿潤状態に保つために使用する保水紙は、高吸水性のシート状のもの、ポリプロピレン 100%の不織布が望ましい (一部省略)。

3. 使用材料

3.1 コンクリート

レデーミクストとコンクリートあるいは、試験対象用のコンクリートに使用される材料を用いて練り混ぜたコンクリートを用いる。

3.2 水酸化ナトリウム

水酸化ナトリウムは、JIS K 8576 に規定する試薬を使用する。

(3 2 に対する解説省略)

4. 供試体の作り方

4.1 コンクリートの配(調)合

配 (調) 合は、レデーミクストコンクリートあるいは試験対象のコンクリートの配 (調) 合とする。添架するアルカリは、水酸化ナトリウムとし、その添加量は酸化ナトリウム当量で、各バッチでそれぞれコンクリート 1m³当たり 2.4kg とする。

4.2 コンクリート供試体の作り方

コンクリートの作り方は試験対象のコンクリートの作り方と同様とするが、原則としては、JIS A 1138 および JIS A 1132 による。

供試体の寸法は、100 mm×100 mm×400 mmまたは 75 mm×75 mm×400 mmを標準とする。供試体の個数は、同一条件の試験に対してそれぞれ 3 個とする。

4.3 アルカリの添加方法

アルカリの添加方法は、次のうちのいずれかによる。

- (1)同時添加法:練混ぜ水に水酸化ナトリウムを加えて水酸化ナトリウム水溶液としてアルカリを添加する。
- (2) あと添加法: 練り上がったコンクリートに細粒状水酸化ナトリウムを添加して、JIS A 1138 によって再び練り混ぜ、アルカリを添加する。

〈解説〉

4.1 通常、アルカリ量が多くなるのに伴ってアルカリシリカ反応による膨張率は大きくなる。しかし、アルカリベシマムの存在する骨材では、ベシマムを超えたアルカリの添加量によって、逆に小さな膨張率となるので、添加アルカリ量と膨張率との間にどのような関係があるかを知るためには、添加アルカリ量を種々変えた配合について検討する必要がある。コンクリート法制定のための共通試験結果によれば、2.40kg/m³のアルカリを添加すれば、コンクリートのアルカリシリカ反応性の誤判定をすることはほとんどないことが分かった。そこで、反応性骨材を使用したコンクリートにおいては、総アルカリ量が酸化ナトリウム当量で3~4kg/m³を超えたときに有害な膨張の発生が認められていることを考慮し、コンクリート 1m³中の総アルカリ量がこの限界値を僅かに超えた、添加アルカリ量 2.40kg/m³の配合のコンクリートが有害な反応を示すか否かによって判定することとした(一部省略)。

(4.2 に対する解説省略)

4.3 あと添加法は、生コンクリートへ適用できる方法である。この方法で $75\times75\times400$ mmの 供試体を作製する場合には、先ず練上がり直後のコンクリートを JIS A 1128 に規定する容器で 76のコンクリートを計り取り、これを練り板上にあけてから、細粒状の NaOH を 21.7g (コンクリート $1m^3$ 当り Na_2O eq. で $2.40 kg/m^3$ に相当) ふりかけ、スコップで均質となるまで手早く練り混ぜた後、型枠につめる。 $10\times10\times40$ cmの供試体を作製する場合には、同上の容器で 2 回計量すればよい(一部省略)。

5. 基長

供試体は、コンクリートの打ち込み後20時間以降24時間以内で脱型を行い、直ちにJIS A 1129 に従って基長を測定することを原則とする。

〈解説〉(省略)

6. 供試体の貯蔵方法

6.1 供試体の被覆

基長の測定が終わった供試体は、水を含ませた保水紙を用いて表面を覆い、これを供試体表面に密着させるために、供試体全体を伸縮性のある鋼袋で包み、さらに、水分の蒸発を防止するために、ポリエチレン製の袋に収納して密閉する。

6.2 供試体の貯蔵方法

被覆の終った供試体は、温度 40±2℃に制御できる貯蔵容器または恒温室に貯蔵する。貯蔵中、 供試体は互いに接触しないように、また、ゲージプラグに供試体の重量がかからないように適当 な架台を用いる。

〈解説〉

6.1 保水紙は予め水に浸しておいて使用時に軽く絞る(約 100g の水が含まれていることが望ましい)(一部省略)。

7. 測定項目及び測定方法

7.1 測定項目

供試体の長さ変化を所定の材令ごとに測定する。その際、供試体の表面を観察して、最初にひ びわれやゲルが滲出した材令を記録する。

7.2 測定方法

長さ変化は、20±3℃に制御室内で、JIS A 1129 に従って測定する。

供試体は、測定の24時間前に貯蔵容器または恒温室からとりだして、測定室内に移動し、被覆 したまま放冷して、供試体温度を測定室内温度に近づけておく。

7.3 測定材令

長さ変化は、基長測定時のほか、以下の材令で測定する。

1, 2, 3, 4, 5 および 6 か月

8. 膨張率の算出

ダイヤルゲージの読みをもとに、次の式によって 0.001%まで計算して、それぞれの材令における膨張率を算出する。

膨張率 (%) =
$$\frac{(Xi-sXi)-(Xini-sXini)}{L} \times 100$$

ここに、 Xi: 材令iにおける供試体のダイヤルゲージの読み

sXi: 材令iにおける標準尺のダイヤルゲージの読み

Xini: 供試体脱型時のダイヤルゲージの読み

sXini: 同時に測定した標準尺のダイヤルゲージの読み

L: 有効ゲージ長(ゲージプラグ内側端面の距離)

(Xi, sXi, Xini, sXini, Lの単位は同一とする。)

9. 判定

供試体3本の平均膨張率が6か月後に0.100%未満の場合は、対象としたコンクリートは「反応性なし」と判定し、0.100%以上の場合は「反応性あり」と判定する。

〈解説〉

コンクリートのアルカリシリカ反応性の判定に用いる膨張率は、ひびわれが確認できる膨張率であること、試験の精度上信頼性の膨張率であること、さらには、実コンクリート構造物にアルカリシリカ反応による損傷が確認されているコンクリートを「反応性あり」と判定できること、アルカリ反応性の鉱物を含まず化学法やモルタルバー法で「無害」と判定される骨材を用いたコンクリートを「反応性なし」と判定できること、などを考慮して 0.100%と定めた。

10. 精度

個々の供試体のある材令の膨張率が、その前の材令の膨張率を下回ってはならない。ただし、 下回る量が膨張率において 0.010%以下の場合には精度は満たされていると考えてよい。

11. 報告

報告には、次の項目を記載する。

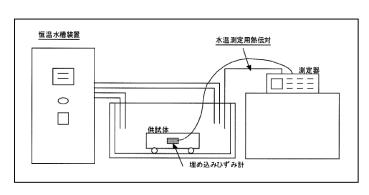
- (1) 結果判定日
- (2) 実施者
- (3) 細・粗骨材の産地、および岩種
- (4) JCI AAR-1 化学法、JCI AAR-2 モルタルバー法等のよるアルカリシリカ反応性試験結果と判定結果
- (5) セメントおよび混和材料の種別とそれぞれのアルカリ量
- (6) コンクリートの配(調)合
- (7) 供試体寸法
- (8) アルカリの添加方法(同時添加法、あと添加法の別)
- (9) 供試体各材令ごとの膨張率とその平均値および判定結果
- (10) 試験中および試験後の供試体観察によって発見された重要な事項等
- (11) 膨張率の経時変化図

1-(2). 熱膨張係数試験の方法

1. 試験方法

コンクリートの温度と内部ひずみの関係を測定するため、「超流動コンクリート研究委員会報告書(Π)における[付録1]「(仮称)高流動コンクリートの自己収縮試験方法」による方法に準拠し、供試体の作製を行なった。

供試体は、10×10×40cm 角柱とし、供試体の軸方向中央に み型ひずみ計「KM-100BT」を設置した。数量は、1配合あたり3本とした。


作製後の供試体は、材齢28日まで温度20℃水中に静置した後、試験に用いた。

温度およびひずみの記録は、 データロガー「TDS-530」を用い、 サンプリングは少なくともコンクリート温度の変化量5℃の間隔で行った。

恒温水槽の温度は、T型熱電対を用いて測定した。

熱膨張係数の測定手順を下記に示す。

- (1) 供試体を水温 20℃に設定した恒温水槽に入れる。
- (2) 恒温水槽の水温 20℃とコンクリート温度が同一となった時点で最初の測定を行う。
- (3) 恒温水槽の制御プログラムにより、水温を 20°Cから 60°Cまで、1 時間当たり 0.4°C上昇させる。(20°Cから 60°Cまでの所要時間は 96 時間)
- (4) 恒温水槽の水温 60 $^{\circ}$ とコンクリート温度が同一であること(60 $^{\circ}$ 恒温となってから 24 時間)を確認した後,水温が 60 $^{\circ}$ から 20 $^{\circ}$ まで 1 時間あたり 0.4 $^{\circ}$ 下降するように設定する。(60 $^{\circ}$ から 20 $^{\circ}$ までの所要時間は 96 時間)
- (5) 恒温水槽の水温 20℃とコンクリート温度が同一となるまで静置する。
- (6) 測定したコンクリート温度上昇量と内部ひずみの関係を、最小二乗法により近似式を求め、直線の傾きを熱膨張係数とする。

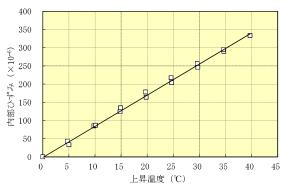


図-6.5 熱膨張係数試験の概要

2. 試験結果

熱膨張係数試験の結果を表-6.5に、上昇温度とひずみの関係を図-6.5に示す。

供試体毎の上昇温度とひずみの関係は、巻末の添付資料(データシート)に示した。

表-6.5 熱膨張係数試験結果 (試験温度: $20^{\circ}C \rightarrow 60^{\circ}C$)

配合 No.	セメント	供試体記号	熱膨引 (×10	
ас ц 170.	種類	V (1 (1)	各値	平均値
1		LZ1-19	7. 74	
• 30-12-20BB	高炉セメント B種	LZ1-20	7. 17	7. 50
(膨張材入り)	(膨張材入り)		7. 58	

温度 $20\sim60^{\circ}$ Cの範囲で上昇温度とひずみの関係を調べたところ,温度上昇と下降の履歴でひずみの差が生じた。

「30-12-20BB (膨張材入り)」(配合 No. 1) は混合セメントを使用しているコンクリートであり、普通ポルトランドセメントのコンクリートよりも比較的強度増進が緩やかで、材齢 28 日より開始した熱膨張係数試験の間も強度増進が進んでいる最中であり、最高温度 60℃の履歴を受けたことで強度増進が加速し、温度下降時にひずみの差が生じた原因と考えられる。

以上のことから、「30-12-20BB(膨張材入り)」(配合 No. 1)の熱膨張係数は、温度 <math>20Cから 60C(上昇温度 40C)の履歴のみで導き、平均値 7.50×10^{-6} /Cであることが確認できた。

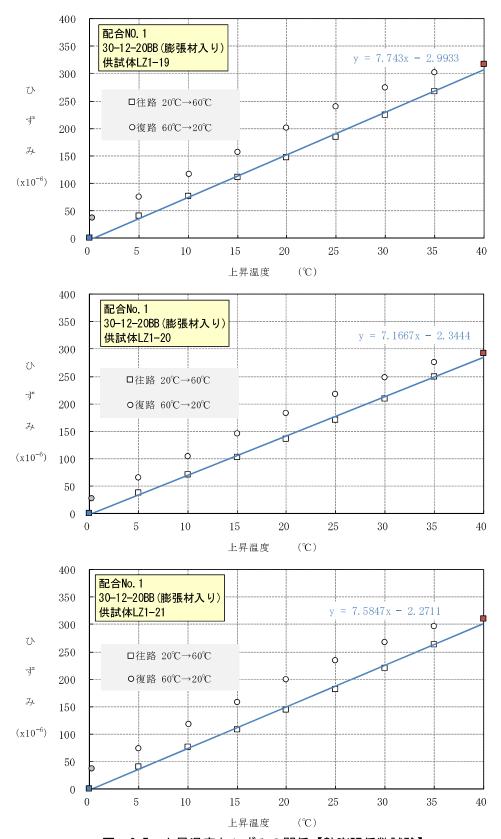
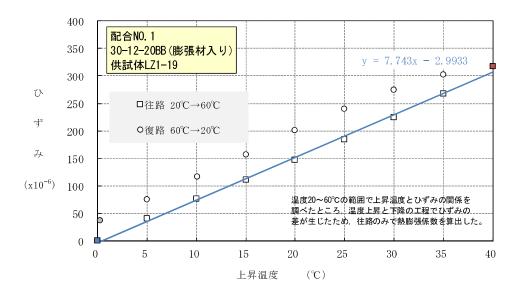
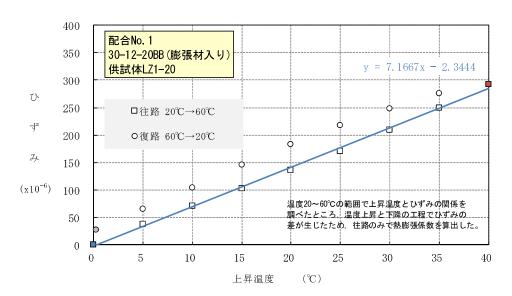



図-6.5 上昇温度とひずみの関係【熱膨張係数試験】

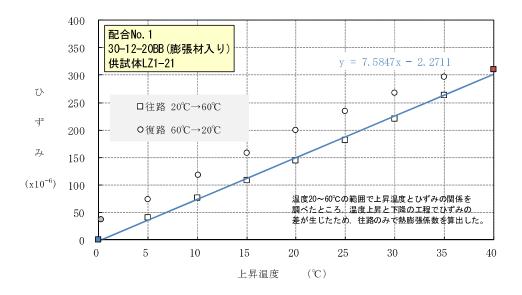
【熱膨張係数試験データシート】

供試	体No.	LZ1-19	ε _i	指示値				
KM-100BT	製品番号	EKJ180382	C _ε	校正係数	校正係数			
校正係数C	έ	0.829	t	温度(℃	2)			
	a	0.000010	Δt	上昇温度	€ (℃)			
零点移動	b	0.0124	εt	ひずみ割	温度ひずみ	11.7×1	0^-6× Δ _t	
補正	С	0.70	ε (t _i)	ひずみ計	零点移動量	t at³+bt²+c	t+d	
	d	-19	χ	ひずみ割	零点移動補	前正量 (ε	$(t_2) - \epsilon (t_1)$)
計算式: ε	2(実ひずる	み) =C ε×	$\epsilon_i + \epsilon_t -$	$C_{\epsilon} \times \chi$				
No.	Δ t	εί	$C_{~\epsilon} \times \epsilon_{~i}$	εt	t	ε (t)	$C_{\epsilon} \times \chi$	ひずみ E 2
1	0.0	0	0.0	0.0	20.0	0.0	0.0	0.0
2	5. 0	-16	-13, 3	58. 5	25.0	6. 4	5. 3	39. 9
3	10. 0	-36	-29.8	117.0	30. 0	13. 4	11.1	76. 1
4	15. 0	-57	-47.3	175. 5	35. 0	21. 1	17.5	110. 7
5	20.0	-76	-63.0	234. 0	40.0	29. 5	24. 5	146. 5
6	25. 0	-92	-76.3	292. 5	45.0	38. 5	31. 9	184. 3
7	30. 0	-105	-87.0	351.0	50.0	48.3	40.0	224. 0
8	35. 0	-112	-92.8	409. 5	55. 0	58. 7	48. 7	268.0
9	40.0	-112	-92.8	468.0	60.0	69.8	57. 9	317. 3
10	35. 0	-71	-58, 9	409. 5	55. 0	58, 7	48.7	301.9
11	30.0	-45	-37.3	351.0	50.0	48. 3	40.0	273. 7
12	25. 0	-26	-21.6	292. 5	45.0	38. 5	31.9	239. 0
13	20. 0	-11	-9.1	234.0	40.0	29. 5	24. 5	200.4
14	15. 0	-1	-0.8	175. 5	35. 0	21. 1	17.5	157. 2
15	10.1	12	9. 9	118. 2	30. 1	13. 6	11.3	116.8
16	5. 0	26	21.6	58. 5	25. 0	6. 4	5. 3	74.8
17	0.2	43	35. 6	2.3	20. 2	0.3	0.2	37. 7



【熱膨張係数試験データシート】

供試	体No.	LZ1-20	εί	指示値				
KM-100BT	製品番号	EKJ180383	С	校正係数	校正係数			
校正係数C	ε	0.831	t	温度(℃	:)			
	a	0.000000	Δ_{t}	上昇温度	(℃)			
零点移動	b	0.0134	εt	ひずみ計	・温度ひずみ	4 11.7×1	0^-6×Δ _t	
補正	С	1.00	ϵ (t_i)	ひずみ計	·零点移動量	tat³+bt²+c	t+d	
	d	-25	χ	ひずみ計	·零点移動補	正量 (ε	$(t_2) - \epsilon (t_1)$)
計算式: ε	2(実ひずる	み) = C ε ×	$\epsilon_{i} + \epsilon_{t} -$	$C_{\epsilon} \times \chi$				
No.	$\Delta_{ m t}$	ε _i	$C_{\epsilon} \times \epsilon_{i}$	٤ _t	t	ε (t)	$C_{\epsilon} \times \chi$	ひずみ ε 2
1	0.0	0	0.0	0.0	20.0	0.4	0.0	0.0
2	5. 0	-17	-14.1	58. 5	25.0	8. 4	6. 6	37.8
3	10.0	-39	-32. 4	117. 0	30. 0	17. 1	13. 9	70. 7
4	15. 0	-62	-51.5	175. 5	35. 0	26. 4	21.6	102.4
5	20.0	-82	-68.1	234. 0	40.0	36. 4	29. 9	136.0
6	25. 0	-100	-83. 1	292. 5	45. 0	47. 1	38.8	170.6
7	30.0	-112	-93. 1	351.0	50.0	58. 5	48. 3	209. 6
8	35. 0	-122	-101.4	409. 5	55. 0	70. 5	58. 3	249.8
9	40.0	-129	-107.2	468. 0	60.0	83. 2	68. 8	292. 0
10	35.0	-91	-75.6	409.5	55. 0	70. 5	58. 3	275. 6
11	30.0	-66	-54.8	351.0	50.0	58. 5	48. 3	247. 9
12	25. 0	-44	-36.6	292. 5	45.0	47. 1	38. 8	217. 1
13	20.0	-25	-20.8	234.0	40.0	36. 4	29. 9	183. 3
14	15.0	-11	-9.1	175. 5	35. 0	26. 4	21.6	144.8
15	10.0	1	0.8	117.0	30, 0	17. 1	13. 9	103. 9
16	5. 0	15	12. 5	58. 5	25. 0	8.4	6.6	64. 4
17	0.2	30	24. 9	2. 3	20. 2	0.7	0.2	27. 0



【熱膨張係数試験データシート】

供試	体No.	LZ1-21	εί	指示値				
KM-100BT	製品番号	EKJ180384	C _E	校正係数	校正係数			
校正係数C		0.828	t	温度(℃	2)			
	a	0.000018	Δ_{t}	上昇温度	(℃)			
零点移動	b	0.0120	εt	ひずみ割	温度ひずみ	4 11.7×1	0^-6× Δ _t	
補正	С	0. 28	ϵ (t _i)	ひずみ割	·零点移動量	t at³+bt²+c	et+d	
	d	-11	χ	ひずみ計	零点移動補	直正量 (ε	$(t_2) - \epsilon (t_1)$))
計算式: ε	2(実ひずる	у) =С _ε ×	$\epsilon_{i} + \epsilon_{t} -$	$C_{\epsilon} \times \chi$				
No.	Δ t	ε _i	$C_{\epsilon} \times \epsilon_{i}$	εt	t	ε (t)	$C_{\epsilon} \times \chi$	ひずみ ε 2
1	0.0	0	0.0	0.0	19. 9	-0.5	0.0	0.0
2	5. 0	-18	-14. 9	58. 5	24. 9	3. 7	3. 5	40. 1
3	10.0	-41	-33. 9	117.0	29. 9	8. 6	7. 5	75. 6
4	15.0	-66	-54.6	175. 5	34. 9	14. 2	12. 2	108. 7
5	20.0	-87	-72.0	234. 0	39. 9	20.4	17. 3	144. 7
6	25. 0	-107	-88.6	292. 5	44. 9	27.4	23. 1	180.8
7	30.0	-122	-101.0	351.0	49. 9	35. 1	29. 5	220. 5
8	35. 0	-132	-109.3	409. 5	54. 9	43. 5	36. 4	263.8
9	40.0	-137	-113.4	468.0	59. 9	52. 7	44.0	310.6
10	35. 0	-92	-76.2	409.5	54. 9	43. 5	36. 4	296. 9
11	30.0	-65	-53.8	351.0	49. 9	35. 1	29. 5	267. 7
12	25. 0	-42	-34.8	292. 5	44. 9	27.4	23. 1	234. 6
13	20.0	-21	-17.4	234.0	39. 9	20.4	17.3	199. 3
14	15.0	-7	-5.8	175. 5	34. 9	14.2	12. 2	157. 5
15	10.1	8	6. 6	118.2	30, 0	8. 7	7.6	117. 2
16	5. 0	23	19.0	58. 5	24. 9	3. 7	3. 5	74.0
17	0.2	42	34.8	2. 3	20. 1	-0.4	0.1	37.0

写真一202 熱膨張係数試験

試験状況

平成 29 年 10 月 16 日

写真一203 熱膨張係数試験

試験状況

平成 29 年 10 月 16 日

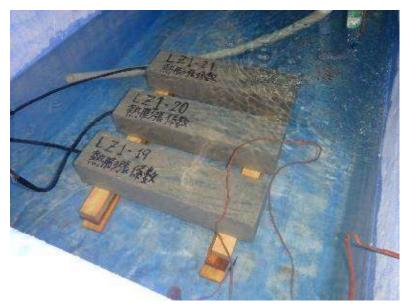
写真一204 熱膨張係数試験

試験状況

平成 29 年 10 月 16 日

写真-205 熱膨張係数試験

試験状況

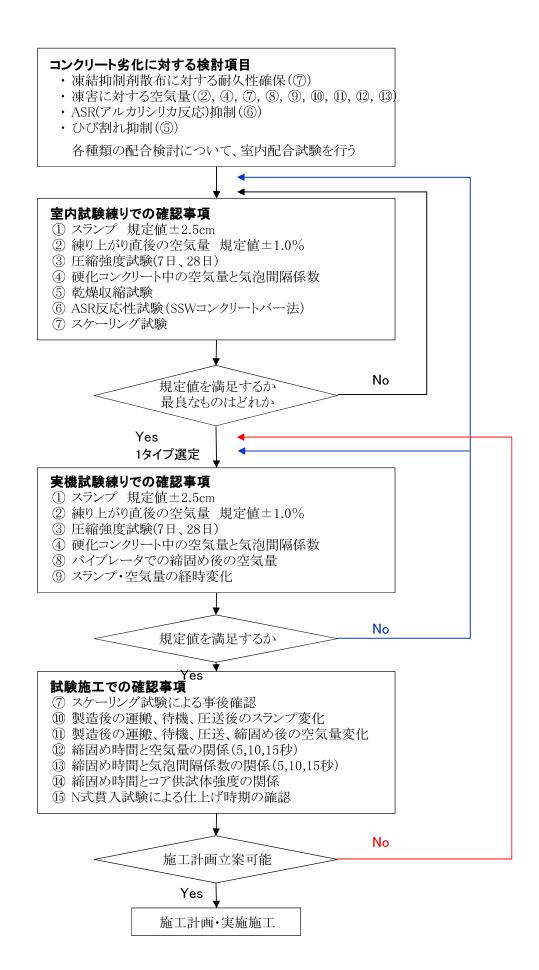

平成 29 年 10 月 16 日

写真一206 熱膨張係数試験

試験状況

平成 29 年 10 月 26 日

写真一207 熱膨張係数試験


試験状況

平成 29 年 10 月 26 日

1-(3). 配合検討における各種試験内容の例(種別Sの事例)

【1】配合検討フロー

【3】 コンクリートの配合検討

(1) 環境特性に対する検討内容

・青ぶな山バイパスのコンクリート構造物は、「東北地方における凍害対策に関する参考資料 (案)」(平成29年3月国土交通省東北地方整備局)による凍害区分3(冬期間の日平均気温 が-3℃未満)及び凍結抑制剤散布量20t/km以上の凍害対策の種別Sの区間となっている。 特に凍結抑制剤の影響を直接受けるRC床版は、苛酷な環境下で供用されることになる。 このことからRC床版の凍害や凍結抑制剤による塩害、塩分環境下でのASR(アルカリシリカ 反応)等の劣化が予想される。そのため長期的な劣化抑制と耐久性確保を目的としコンクリー トの配合計画を含めた高耐久化のための検討を行う必要がある。

(2) 配合条件設定

(2)-1. 対策

- 1). 凍結抑制剤散布に対する高耐久化
- 2). 凍害に対する空気量・質の確保 (目標空気量6%、W/B45%以下)
- 3). ASR(アルカリシリカ反応)抑制 (高炉セメント又はフライアッシュセメント)
- 4). ひび割れ抑制 (膨張材)
- 5). 塩害対策 (防錆処理鉄筋)

(2)-2. 配合条件

仕様	コンクリート品質	水結合材比	目標空気量	膨張材	セメント種類	スランプ
国交省仕様	標準	55%以下	4.5%	なし	普通ポルトランド(N)	12cm
高耐久仕様	高耐久	45%以下	6.0%	あり	高炉セメント(BB) フライアッシュ (FB)	12cm

(3) 配合検討の種類

配合	呼び強度 N/mm ²	スランプ cm	セメント種類	水結合材比 W/B %	目標空気量%	膨張材
改良配合			普通ポルトラント゛	50		
A	24	12	(N)	45	6.0	あり
				40		
ᆉᅲᆓᄀᄉ				50		
改良配合	24	12	高炉セメント (BB)	45	6.0	あり
В			(BB)	40		
7/ th #7 A				50		
改良配合	24	12	フライアッシュ (FB)	45	6.0	あり
			(1 1)	40		

- *1. 普通ポルトランドセメント(N)、高炉セメント(BB)の目標単位水量 170kg/m³以下
- *2. フライアッシュセメント(FB)の目標単位水量 168kg/m³以下
- *3. 膨張材の添加量 20kg/m3

【4】室内試験練り

(1) 室内配合計画

・室内配合試験のセメントについては、国土交通省 東北地方整備局 土木工事共通仕様書 (参考資料)の「レディーミクストコンクリート標準仕様基準」により非合成桁床版の標準仕様と して定められている普通ポルトランドセメントと、アルカリシリカ骨材反応の抑制効果や緻密化 による水密性の向上が期待されら高炉セメントとフライアッシュセメントを用いる。

水結合材比(W/B)および空気量(%)については、「東北地方における凍害対策に関する参考資料(案)」(平成29年3月国土交通省東北地方整備局)により、水結合材比45%以下、目標空気量6%としている。

そのため、空気量は 6%、スランプは規定値の12cm、水結合材比は45%を中央値とし、50%・45%・40%の3種類にて比較する。

また、水結合材比を小さくするため紛体量が多くなるので、ひび割れ抑制対策として膨張材を使用する。呼び強度については24N/mm²以上とする。 以下に配合を示す。

番号	セメント種類	呼び強度 N/mm2	スランプcm	空気量%	水結合材比 W/B %	膨張材
1	普通				50	
2	ボ [°] ルトラント゛	24以上	12.0	6.0	45	あり
3	(N)				40	
4	高炉				50	
5	セメント	24以上	12.0	6.0	45	あり
6	(BB)				40	
7	フライ				50	
8	アッシュ	24以上	12.0	6.0	45	あり
9	(FB)				40	

(2) 使用材料

材料名	産地または購入先	規格または品名	備考
セメント		普通ポルトランド(N)	
IJ.		高炉セメントB種(BB)	
IJ.		フライアッシュセメントB種(FB)	
細骨材		砂	川砂
粗骨材		砕石2505	輝緑岩
混和剤		(AE減水剤標準型 I 種)高機能	FB
IJ		(AE剤 I 種)	N, BB
IJ.		(AE剤 I 種)	FB
膨張材			

(3) 使用機械

機械·器具名称	仕 様	備 考
強制二軸ミキサ	$0.06\mathrm{m}^3$	
エアーメータ	ワシントン型 7リットル	
スランプ試験器	0∼25cm	
アムスラー式圧縮試験機	最大 1000KN	

(4) 試験方法

(4)-1. 計量

・配合計画書に基づき、セメント、水、細骨材、粗骨材、混和剤、膨張材を正確に軽量する。 なお、細骨材については表面水率を計測し、細骨材と水の重量補正を行う。

材料計量状況

(4)-2. 練混ぜ

・練混ぜは、細骨材、粗骨材、セメント、膨張材、水(混和剤含む)の順序でミキサーに投入 する。強制二軸ミキサを使用するため、練混ぜ時間は1分とする。 所定時間練混ぜたら、容器に吐出し速やかに各種試験を開始する。

強制二軸ミキサ

練混ぜ状況

(4)-3. 性状試験

①. スランプ試験

- ・スランプ台板を水平に設置する。
- ・ スランプコーンをスランプ 台板の中心に置き、下部の耳と呼ばれる出っ張った部分を足で踏みしっかりと固定する。
- ・設置したスランプコーンの中にハンドスコップなどを使って、上から生コンクリートをほぼ 等しい量で3層に分けて詰める。その際、層ごとにスランプ突き棒で25回ほど突きなが らいっぱいになるまで詰める。各層を突く際の突き棒の突き入れ深さは、その前の層に 届くように突く。その後、スランプコーンの上面を平らにコテで均す。
- ・スランプコーンの取っ手をつかみ、足をスランプ台板の外側に移動してから、約3秒を かけて静かにスランプコーンを垂直に引き上げる。
- ・スランプ台板上に残った試験体生コンクリートの中央部の高さが何cm下がったか計測 する。

スランプ試験

②. 空気量試験

- ・下部のバケツ部分にスランプ試験同様にコンクリートを3層・各層25回突きにて充填する。各層を突いた後、突き穴がなくなりコンクリートの表面に大きな泡が見えなくなるように、容器の側面を10~15回木づち(槌)などでたたく。
- ・上部メーターをセッティングして、メーター下右側に見える取っ手を上下にピストンさせ て加圧し空気量を測定する。

(4)-4. 供試体作製

- ・型枠の内面には、コンクリートを打ち込む前に鉱物性油又は非反応剥離材を薄く塗る。
- ・コンクリートは、2層以上のほぼ等しい層に分けて詰める。各厚さは160mmを超えないようにする。また、各層は8~11回程度突き棒にて突く。 (供試体直径100mmの場合:8~11回程度突く)
- ・ 突き終わった後、型枠側面を木槌で軽くたたいて、突き棒によってできた穴をなくす。 型枠の上端より上方のコンクリートは取り除き、表面を平らに均す。

(5) 試験内容と確認項目

確認事項(○番号はフロー図より)

①~③性状試験結果表

	くかく エナくぎ								
♦	セバト種類	水結合材比	呼び強度	圧縮強度試験	度試験	ベデス	スランプcm	空気量%	9、事
HCH		W/B %	N/mm^2	$\boxminus L$	28 ⊞	規定値	実測値	規定値	実測値
く 1 単 七 フェ	"上"是一点,"一"	20							
及 A A		45	24以上			12.0		6.0	
		40							
7 T + - 7 T	1 1	20							
及 及 B	高炉セメント (RR)	45	24以上			12.0		6.0	
à	(33)	40							
く 1 1 1 1 1 1 1 1 1 1		92							
対対対	ノフイアッシュ (FR)	45	24以上			12.0		6.0	
)		40							

④硬化コンクリート中の空気量と気泡間隔係数

		ľ
セメハ種類	水結合材比 空気量	気泡間隔係数
	W/B % %	μ m
7.1001 20 米	20	
普通ボルトフント (N)	45	
	40	
7 2 1 1	20	
画炉セメント (RR)	45	
(11)	40	
	20	
ノレイノシンリ (FR)	45	
	40	

500 μm以下の空気泡で硬化コンクリートの目標空気量を3%以上(全体空気量で4.5%以上)

⑤乾燥収縮試験 测空抽間 计压得

測定期間:1年(試験開始材令7日)

⑥ASR反応性試験 (SSWコンクリートバー法) 測定期間:1年(試験開始材令1ヶ月)

(0スケーリング試験

測定期間:2ヶ月(試験開始材令1ヶ月)

【5】 実機試験練り

(1) 目的

- ・室内試験練りと実機試験とでは、ミキサーの練混ぜ効率や練混ぜエネルギーの違いにより、フレッシュコンクリートの性状が必ずしも同様にならない場合があるため、実機試験にて性状を確認する。
- ・実機試験は、室内試験で実施した確認事項を実機により再現可能であることを確認する。 特に、トラックアジテータでの運搬中のスランプと空気量については、最低 3m³以上積載運搬し変動を確認する。また、バイブレータによる締固め後にフレッシュコンクリートでの空気量を計測し空気の保持性を確認する。

(2) 実機試験練り配合

・実機試験練りの配合は、室内試験練りで行った各種試験データの結果から耐久性が確保され、かつ経済性を考慮して決定する。

配合	セメント種類	呼び強度 N/mm²	スランプcm	空気量%	水結合材比 W/B %	膨張材
決定配合 X		24以上	12.0	6.0		あり

(3) 生コンプラント設備

原材料の受入・保管

原材料		貯 蔵 設 備 名 称	能力	台数
セメント		NO.1 [高炉セメントB種]	70 t	1
	セメントサイロ	NO.2 [早強セメント]	30 t	1
		NO.3 [普通セメント]	50 t	1
		NO.4 [普通セメント]	50 t	1
		NO.1 細骨材 [砂]	180 m³	1
	ストックヤード	NO.2 細骨材 [砂]	180 m³	1
		NO.3 粗骨材 [砕石2505]	180 m³	1
		NO.4 粗骨材 [砕石2005]	150 m³	1
		NO.5 粗骨材 [砂利25]	150 m³	1
		NO.6 粗骨材 [砕石4020]	150 m³	1
		NO.7 [予備]	180 m³	1
		NO.8 [予備]	180 m³	1
		NO.9 [予備]	150 m³	1
		NO.10 [予備]	150 m³	1
地下水	地下			1
上澄水	上 澄	水 槽	60 m³	1
		NO.1	7000 L	1
 混 和 剤	混和剤貯蔵	NO.2	7000 L	1
	タンク	NO.3 [予備]	6000 L	1
		NO.4	3000 L	1

原材料の供給

貯蔵ビン	/	原材料	能力	台数
	C_1	高炉セメントB種	4 m^3	1
セメント	C_2	早強セメント	4 m^3	1
	C_3	普通セメント	5 m³	1
細骨材		砂	13 m³	1
が出 月 171 	S_2	砂	16 m³	1
粗骨材	G_1	砕石2505	14 m³	1
	G_2	砕石2005	8 m³	1
	G_3	砕石4020	8 m³	1
	G_4	砂利25	13 m³	1
水	W_1	上 澄 水	0.2 m^3	1
/1/	W_2	地下水	2.0 m ³	1

計量練り混ぜ(計量器)

計量器名称	秤量	目量(最小表示値)	目量の数	精度等級	台数	計量方法
セメント	1000 kg	1 kg	1000	4 級	1	単 独
細骨材	2000 kg	2 kg	1000	11	1	IJ
NO.1 粗骨材	2500 kg	2 kg	1250	3 級	1	IJ
NO.2	2500 kg	2 kg	1250	"	1	IJ
水	400 kg	0.5 kg	800	4 級	1	累 加
NO.1 混和剤	20 kg	0.02 kg	1000	"	1	単 独
NO.2	20 kg	0.02 kg	1000	11	1	単独·累加

各種設定及び補正装置

	名 称	仕様・能力		
	型式	Commando Its-B		
	制御方法	マイクロコンピュータ制御		
	操作部	キーボード+マウス及び専用パネルスイッチ		
操作盤	表示部	計量•設定部、供給部		
	表示方法	デジタル表示(カラーディスプレイ)		
	計量素子	15種 7素子		
	監視モニタ	32インチカラー液晶テレビ (1台 4分割)		
	スランプモニタ	SL-Fuzic		
表面水	率補正装置	0 - 10 0 9/		
$(S_1, S_2,$	$G_1, G_2, G_3, G_4)$	$0 \sim 19.9 \%$		
容量	量変換装置	0.01 ~ 1.67 ㎡(0.01㎡刻み)		
ミキ	・サタイマー	0~999秒		

練り混ぜ設備

WK / IZE C EX MI	
	ミキサの能力及び仕様
製造会社	
型式	DSF-167 (二軸強制練りミキサ)
容量	1.67 m³
能力	150 m³∕h
動力	$30 \text{ kw} \times 2 = 60 \text{ kw}$
回 転 数	36.5 r p m
コンクリートホッパ	3.5 m ³
量目確認レベル棒	0.5 , 1.0 , 1.5 , 1.67 , 2.0 , 2.5 , 3.0 , 3.34 , 3.5 m ³

運搬設備

設備名		台 数
	10 t 車	10
トラックアジテータ	4 t 車	2
	5 t 車	1

製造付帯設備

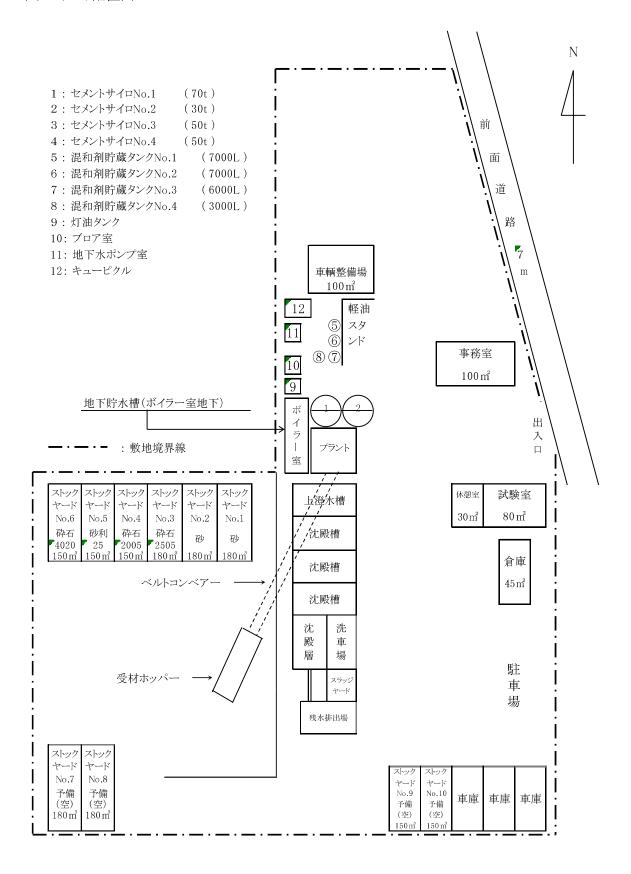
設備名称	仕様及び能力
コンプレッサ-	吐出量: 3.7 m³/min
集 塵 機	風量:30㎡/min
ボイラー	伝熱面積: 9.65 m²
中和処理装置	1.5 m³ ∕ h
モートルブロック	吊り荷重:0.5 t 揚程:14 m
キューピクル	受電容量 230KVA
井戸ポンプ	口径65 3.7kw 400ℓ/min

(4) 試験•検査設備

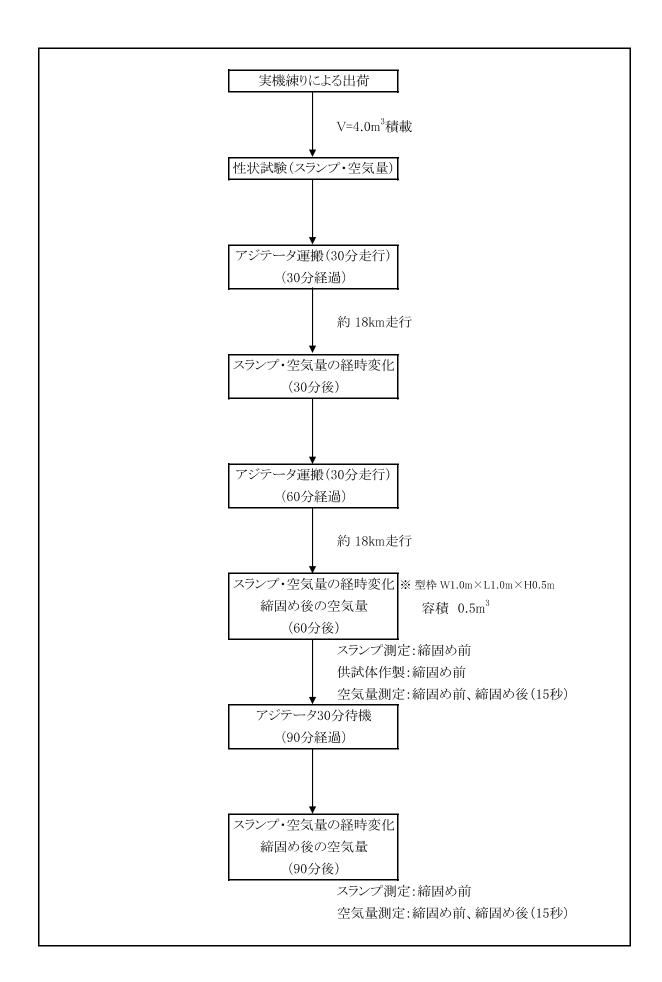
コンクリート試験関係

検査設備名称	仕	様	台数
スランプ測定器及び器具	スランプコーン、平板、突き棒	、 検尺	4組
空気量測定器及び器具	ワシントン型 7L		4組
塩分量測定計(カンタブ標準品		最低在	E庫1箱
デジタル温度計	測定精度:±1℃/-20~+1	50°C	1
棒状温度計	$50^{\circ} \text{C} \times 4$ $100^{\circ} \text{C} \times 4$ $200^{\circ} \text{C} \times 1$		計9
1年代1四尺日	(購入時、デジタル温度計と比較して、差が±1℃以内のものとする。)		
圧縮強度試験機	1000 KN (100, 250, 500)		1
	圧縮試験用	ϕ 100×200	110
供試体用型枠	/二、小目中人间失/门	ϕ 125×250	60
	曲げ試験用	$150\times150\times530$	12
試験 練りミキサ	傾胴型 80L		1
恒温養生水槽	$2.6 \times 1.2 \times 0.8 = 2.5 \mathrm{m}^3$	$2.6 \times 1.2 \times 1.2 = 3.1 \mathrm{m}^3$	各1
恒温水循環装置	使用温度 20℃ (センサー梅	約 部±1℃)	1
棒状バイブレーター	振動数 12000 ~ 14000		1
キャッピング用ガラス板	$20 \text{cm} \times 20 \text{cm} \times 10 \text{mm}$		100
キャッピング用セル板	$20 \text{cm} \times 20 \text{cm} \times 0.06 \text{mm}$		100
ミキサ練混ぜ性能試験用器具	杓子、吸水性布、試料容器		1式

骨材試験関係


検査設備名		仕 様	台数
標準網ふるい		0.075, 0.15, 0.3, 0.6, 1.2, 2.5, 5, 10, 15, 20, 25, 30, 40 mr	各1
木枠ふるい		5, 10, 15, 20, 25, 30, 40mm	各1
電気定温乾燥器		容量 150L , 最高温度 200℃	1
大型循環乾燥器		容量 600L , 最高温度 200℃	1
粗骨材密度測定容器	뭄	金網カゴ 網目 3.0mm 直径20cm、高さ20cm	1
粗骨材表面水率測定	官容器	金属製容器 直径20cm 高さ20cm	1
ホーロー水槽		直径36cm 高さ36cm	1
フローコーン		上面内径40±3mm、底面内径90±3mm、高さ75±3mm、厚さ4mm以上	1
突き棒		直径23±3mm、質量340±15g	1
試料分取器		細骨材用 、 粗骨材用	1
単位容積質量測定容器		10L	1
	No.1	秤量 6000g·最小表示值 0.1g 精度等級 2級	1
デジタル台秤	No.2	秤量 60kg ・最小表示値 0.01kg 精度等級 3級	1
	No.3	秤量 30kg ・最小表示値 0.001kg 精度等級 2級	1
自動ふるい振動機	•	細骨材用 7段式	1
チャップマンフラスコ		500mL	4
メスフラスコ		500mL	4
メスシリンダー		100mL×2, 500mL×1, 1000mL×1	計4
限度見本		砂、砕石2005、砕石2505、砕石4020、砂利25 (粒度範囲の上・下限分布)	各1
デシケータ		内径φ306mm 内容量19L	1

(5) 主要資材


主要資材

	種類 又は 品名	生産者及び 製造業者	製造工場、出荷基地 又は産地
セ	普通ポルトランドセメント		
セメント	早強ポルトランドセメント		
 	・高炉セメント B種		
	• 砂		
細			
地	・砂 利 25		
骨材	・砕 石 2005		
	・砕 石 2505		
	・砕 石 4020		
混			
和剤			

(6) プラント配置図

(7) 実機試験練りフローチャート

(9) 試験内容と確認項目

確認事項(○番号はフロー図より) 室内試験練りで選定された配合により試験を行う

①~③性状試験結果表

配合決定配合X	ンプントエンシ	セかト種類 水結合材比 呼び強度 圧縮強度試験 N/mm² スランプ cm 空気量 %	W/B % N/mm ² 7 H 28 H 規定値 実測値 規定値 実測値	24以上 6.0
TAN A	ングンドノング	セグト種類		
-	W 11/1-11 0 0 0	♦ E		決定配合X

④硬化コンクリート中の空気量と気泡間隔係数

) 	×		
ノフェン・トー	気泡間隔係数	m m	
	空気量	%	

(8)締団め後の空気量 (9)スランプ・空気量の経時変化

シービッシン	60分締固め前 60分締固め後 90分締固め前 90分締固め後
	前60分締固め後
ほうメル	60分締固め前
ノノエベキツ	408
これ里、@バン	練り直後
の作用の及び工人主、のバン・/ エハ 単い性的 久 IL	項目

2-(1). 温度応力解析の例(単純鋼鈑桁(フライアッシュ))

1. 温度応力解析の目的

寒中にコンクリート床板を施工する場合、養生方法として、鋼主桁からの吊り足場全体をシート養生し、床版の底枠の下面に給熱する(写真-1参照)こと、床版上面は、コンクリートの自己発熱による温度をエアマット等により保温する(写真-2参照)ことで、初期凍害を防止するとともに、有害なひび割れを抑制することとした。そのため、平成27年3月20日の床版コンクリートの打込み時期にあわせ、床版底枠の下面の最適な養生環境温度とコンクリートの打込み温度を決定する目的で、床版と鋼桁の拘束条件を合成(設計は非合成)とし、温度応力解析を実施した。

2. 解析ケースと解析モデル

コンクリートの打込み温度を生コンクリート製造工場での練混ぜ水のボイラーによる温度 調整で制御可能な範囲である 10 と 15 の 2 ケース、底型枠下面部のジェットファンによる 給熱で調整可能な範囲の 10 に 15 と 20 の 3 ケース、計 6 ケースで、外気温は打込み時期の 5 年間の日平均気温を用いて温度応力解析を実施し、ひび割れ指数を算定した。なお、床 版と鋼桁の拘束条件は、床版のひび割れが発生しやすい合成(設計上は非合成)とした。

解析モデル図を、図-1 に示す。解析ソフトは ASTEA MACS ver8 を使用した。

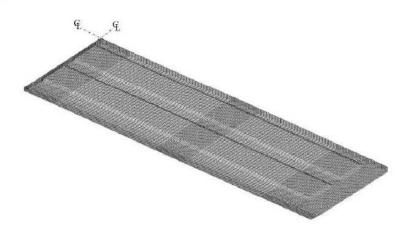


図-1 解析モデル図

3. 解析結果

表-1 に各解析ケースでの最小ひび割れ指数を示し、図-2 に各条件での温度履歴グラフとひび割れ指数を示す。

	養生環境温度 10℃	養生環境温度 15℃	養生環境温度 20℃
コンクリート打込み温度 10℃	1.91	0. 91	0.73
コンクリート打込み温度 15℃	0. 95	0.73	0. 55

表-1 最小ひび割れ指数

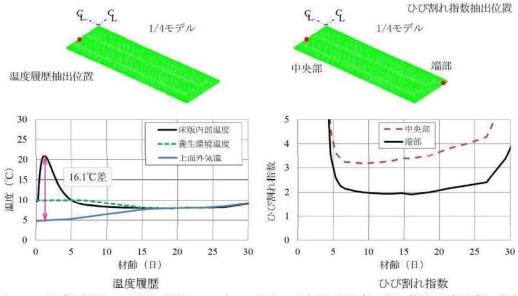


図-2(a) 温度履歴とひび割れ指数 1.91 (コンクリート打込み温度 10℃、養生環境温度 10℃)

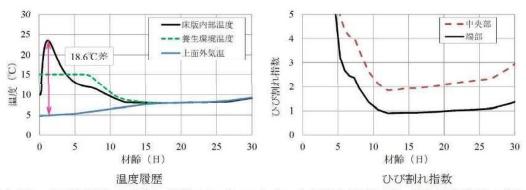


図-2(b) 温度履歴とひび割れ指数 0.91 (コンクリート打込み温度 10℃、養生環境温度 15℃)

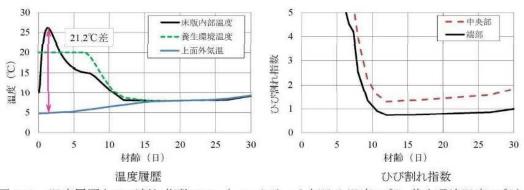
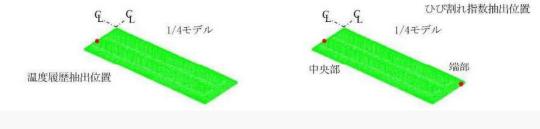



図-2(c) 温度履歴とひび割れ指数 0.73 (コンクリート打込み温度 10℃、養生環境温度 20℃)

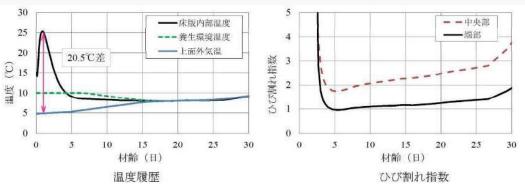


図-2(d) 温度履歴とひび割れ指数 0.95 (コンクリート打込み温度 15℃、養生環境温度 10℃)

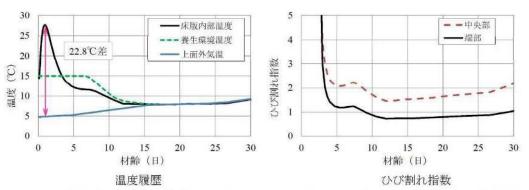


図-2(e) 温度履歴とひび割れ指数 0.73 (コンクリート打込み温度 15℃、養生環境温度 15℃)

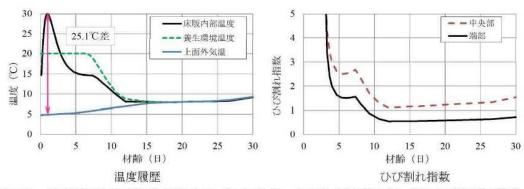


図-2(f) 温度履歴とひび割れ指数 0.55 (コンクリート打込み温度 15℃、養生環境温度 20℃)

解析結果から、コンクリート打込み時期の日平均外気温 4℃、コンクリート打込み温度 10℃、かつ養生環境温度 10℃の時に、ひび割れ抵抗指数を 1.8 以上確保できることが分かった。

4. 解析結果の養生温度管理への適用

床版下面と床版上面の養生状況写真を写真-1と2に示す。

写真-1 床版下面の養生状況写真

写真-2 床版上面の養生状況写真

打込み当日の外気温が想定より高かったため、コンクリートの練混ぜ水は、加温せずに 13 ±3℃で管理した。写真-1 のようにシート養生しジェットヒーター6 台により養生環境温度を 10℃以上で管理することとし、コンクリート表面は、液体搬送シートにより湿潤を保ちその上にエアマットを敷設することで保温する保温保湿養生を行った。

5. 温度管理と施工結果

床版表面、内部と底型枠下面の養生環境温度の温度測定を、インターネットを用い実施した。夜間の外気温の冷え込みに対しては、給熱ファンヒーターにより解析結果から養生環境温度を10℃以上に管理することで温度差を制御した。また、温度測定結果に基づき床版底型枠下面の給熱養生打ち切りの時期を決定した。給熱養生の打ち切りは、内部温度を外気がほぼ平衡状態となった4月13日(打込み後24日目)とした。温度測定結果と解析結果を合わせて図-3に示す。

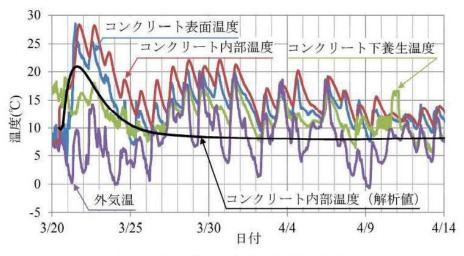


図-3 温度の測定結果と解析結果の比較

コンクリートの内部温度と表面温度の差をモニタリングし、環境温度を制御することで、 床版のひび割れ発生のないことを打込み後3ヶ月間の養生完了後に確認することができた。

6. 考察

温度測定結果から、打込み後の翌朝の外気温 0℃への冷え込みに対し、床版内部温度は 18℃、上表面の温度は 13℃と実施した養生方法により初期凍害の抑制に十分な保温養生効果を確認した。養生期間中の日中の気温上昇や直射日光の影響により床版上表面の温度が 10~20℃に変動しており、ブルーシート等での養生を付加するか、遮光エアマットの使用も考慮すべきであったことが反省点である。

また、床版下面の環境温度について、平均外気温相当の 5℃で追加解析を実施した。次頁にその結果を添付する。その結果から、ひび割れ指数は、環境温度 10℃と比べ一般断面でほぼ同等、端部の部材厚の厚い断面で 1.53 と若干下回るものの概ね良好と言える。よって、環境温度としては、平均気温からの冷え込みに対し 5~10℃で給熱保温することで、過度な給熱保温は必要ないものと言える。

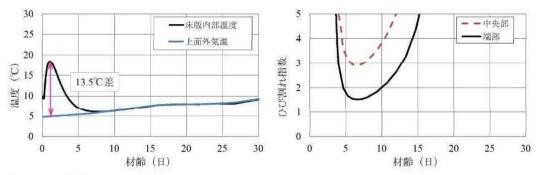


図-4 温度履歴とひび割れ指数 (コンクリート打込み温度10℃、養生環境温度= 平均外気温)

2-(2). 橋梁形式毎の床版ひび割れ指数(代表的な形式による解析事例)

①多径間連続鋼鈑桁橋

次項に示す表―1は、温度応力解析により、RC床版のひび割れリスクを検討した結果をまとめたものである。(仮称) 新気仙大橋での試行工事における計測結果により検証した実橋モデルにより計算された結果である。

水結合材比が45%で、高炉セメントB種を用い、膨張剤を使用した(仮称)新気仙大橋で使用された配合を設定している。湿潤養生を行う材齢28日までの、最小ひび割れ指数を示している。

外気温,コンクリートの打込み温度,コンクリートの熱膨張係数を様々に変化させた計算結果を示している。コンクリートの自己収縮については、JCIのマスコンクリートのひび割れ制御指針2016のモデルを用いた場合を100%と表記し、湿潤養生ににより自己収縮が低減された場合等を想定し、自己収縮の量を75%、50%に低減した場合の計算結果も示している。

床版の段階施工による応力を考慮しない場合と、施工ステップ応力を 1.0MPa として温度応力と足し合わせた場合のひ び割れリスクを示した。ひび割れのリスクは、引張強度を引張応力で除したひび割れ指数で示した。

実施工において、ひび割れのリスクを評価する際の参考資料として提示するものである。

なお、数値解析のモデルは以下を参照されたい。

- 1. Arifa Iffat Zerin, Akira Hosoda, Satoshi Komatsu: Numerical Simulation of Early Age Expansion and Autogenous Shrinkage Behavior of Blast Furnace Slag Concrete with Expansive Additive,構造工学論文集,Vol. 64A, pp. 666 674, 2018.3
- 2. Arifa Zerin, Akira Hosoda, Satoshi Komatsu and Kosuke Kashimura, Numerical Simulation of Early Age Thermal Stress in Durable RC Bridge Slab Utilizing Blast Furnace Slag Concrete with Expansive Additive, The 12th fib International PhD Symposium in Civil Engineering, 2018.8
- 3. Arifa Zerin, Akira Hosoda, Satoshi Komatsu and Nobuyuki Nagata Numerical Simulation of Thermal Stress in Highly Durable RC Slab on PC Composite Girder Bridge, コンクリート工学年次論文集, Vol.40, No.1, pp.465 470, 201

表-1. 多径間連続鋼鈑桁橋の例

外気温 (°C)	コンクリー ト打込み 温度 (°C)	熱膨張 係数 (x10 ^{-6/°} C)	JCI2016 自己収縮 (%)	最小ひ び割れ 指数的 材齢 (日)	温度応力 (MPa)	引張強度 (MPa)	ひび割れ指 数(温度応力 のみ)	要求するひ び割れ指数 を1.0とした場 合の合否	温度応力と施工 ステップ応力を足 し合わせた応力 (Mpa)	ひび割れ 指数(温度 応力+施工 ステップ応 力)	要求するひ び割れ指 数を1.0とし た場合の合 否
30	20	12	100	9	2.08	3.01	1.44	CI > 1	3.1	0.98	CI < 1
30	20	12	75	9	1.84	3.01	1.63	CI > 1	2.8	1.06	CI > 1
30	20	12	50	9	1.60	3.01	1.88	CI > 1	2.6	1.16	CI > 1
30	20	9	100	9	1.31	3.01	2.30	CI > 1	2.3	1.30	CI > 1
30	20	6	100	18	0.64	3.37	5.23	CI > 1	1.6	2.05	CI > 1
30	25	12	100	8	2.54	2.96	1.17	CI > 1	3.5	0.84	CI < 1
30	25	12	75	8	2.30	2.96	1.29	CI > 1	3.3	0.90	CI < 1
30	25	12	50	8	2.06	2.96	1.44	CI > 1	3.1	0.97	CI < 1
30	25	9	100	9	1.67	3.03	1.81	CI > 1	2.7	1.13	CI > 1
30	25	9	75	9	1.43	3.03	2.12	CI > 1	2.4	1.25	CI > 1
30	25	6	100	12	0.82	3.18	3.90	CI > 1	1.8	1.75	CI > 1
30	30	12	100	7	3.02	2.92	0.97	CI < 1	4.0	0.73	CI < 1
30	30	12	75 50	7	2.79	2.92	1.05	CI > 1	3.8	0.77	CI < 1
30 30	30 30	12 9	100	7	2.55 1.98	2.92 2.92	1.14 1.47	CI > 1 CI > 1	3.6 3.0	0.82 0.98	CI < 1 CI < 1
30	30	9	75	7	1.75	2.92	1.47	CI > 1	2.7	1.06	CI > 1
30	30	6	100	9	1.01	3.05	3.01	CI > 1	2.0	1.52	CI > 1
30	35	12	100	6	3.50	2.87	0.82	CI < 1	4.50	0.64	CI < 1
30	35	12	75	6	3.28	2.87	0.88	CI < 1	4.28	0.67	CI < 1
30	35	12	50	6	3.05	2.87	0.94	CI < 1	4.05	0.71	CI < 1
30	35	9	100	7	2.40	2.95	1.23	CI > 1	3.40	0.87	CI < 1
30	35	9	75	7	2.17	2.95	1.36	CI > 1	3.17	0.93	CI < 1
30	35	9	50	7	1.94	2.95	1.52	CI > 1	2.94	1.00	CI = 1
30	35	6	100	8	1.23	3.02	2.45	CI > 1	2.23	1.35	CI > 1
20	15	12	100	9	2.32	2.66	1.14	CI > 1	3.3	0.80	CI < 1
20	15	12	75	9	2.01	2.66	1.32	CI > 1	3.0	0.88	CI < 1
20	15	12	50	9	1.70	2.66	1.57	CI > 1	2.7	0.99	CI < 1
20	15 15	9	100 75	9	1.66 1.35	2.66	1.60 1.97	CI > 1 CI > 1	2.7	1.00	CI = 1 CI > 1
20 20	15	9	50	12	1.11	2.66 2.83	2.55	CI > 1	2.4 2.1	1.13 1.34	CI > 1
20	15	6	100	12	1.11	2.83	2.56	CI > 1	2.1	1.35	CI > 1
20	20	12	100	8	2.85	2.62	0.92	CI < 1	3.8	0.68	CI < 1
20	20	12	75	7	2.43	2.54	1.04	CI > 1	3.4	0.74	CI < 1
20	20	12	50	7	2.13	2.54	1.19	CI > 1	3.1	0.81	CI < 1
20	20	9	100	8	2.04	2.62	1.28	CI > 1	3.0	0.86	CI < 1
20	20	9	75	8	1.73	2.62	1.52	CI > 1	2.7	0.96	CI < 1
20	20	9	50	9	1.45	2.68	1.85	CI > 1	2.5	1.09	CI > 1
20	20	6	100	9	1.28	2.68	2.09	CI > 1	2.3	1.18	CI > 1
20	25	12	100	7	3.38	2.58	0.76	CI < 1	4.4	0.59	CI < 1
20	25	12	75	7	3.06	2.58	0.84	CI < 1	4.1	0.64	CI < 1
20	25	12	50	7	2.74	2.58	0.94	CI < 1	3.7	0.69	CI < 1
20	25	9	100	7	2.43	2.58	1.06	CI > 1	3.4	0.75	CI < 1
20 20	25 25	9	75 50	7	2.11 1.79	2.58 2.58	1.22	CI > 1	3.1 2.8	0.83 0.92	CI < 1
20	25	6	100	7 8	1.79	2.58	1.44 1.73	CI > 1 CI > 1	2.8	1.04	CI < 1 CI > 1
10	10	12	100	12	2.04	2.45	1.20	CI > 1	3.0	0.81	CI < 1
10	10	12	75 F0	12	1.76	2.46	1.40	CI > 1	2.8	0.89	CI < 1
10	10	12	50	12	1.47	2.46	1.67	CI > 1	2.5	1.00	CI = 1
10	10	9	100	18	1.63	2.74	1.68	CI > 1	2.6	1.04	CI > 1
10 10	10 10	9 6	75 1 00	18 28	1.30 1.19	2.72 3.02	2.10 2.55	CI > 1 CI > 1	2.3 2.2	1.19 1.38	CI > 1 CI > 1
10	15	12	100	8	2.37	2.22	0.93	CI < 1	3.4	0.66	CI < 1
10	15	12	75	9	2.20	2.22	1.04	CI > 1	3.2	0.72	CI < 1
10	15	12	50	9	1.93	2.29	1.19	CI > 1	2.9	0.72	CI < 1
10	15	9	100	9	1.71	2.29	1.34	CI > 1	2.7	0.85	CI < 1
10	15	9	75	9	1.44	2.29	1.59	CI > 1	2.4	0.94	CI < 1
10	15	6	100	28	1.39	3.03	2.19	CI > 1	2.4	1.27	CI > 1

②2径間連続鋼鈑桁橋

表-2は、温度応力解析により、2スパンの鋼箱桁橋のRC床版のひび割れリスクを検討した結果をまとめたものである。 (仮称)新柳渕橋を想定した実橋モデルにより計算された結果である。

水結合材比が 45%で、高炉セメント B 種を用い、膨張材を使用した高耐久床版用の配合を設定している。湿潤養生を 行う材齢 28 日までの、最小のひび割れ指数を示している。

外気温, コンクリートの打込み温度, コンクリートの熱膨張係数を様々に変化させた計算結果を示している。コンクリートの自己収縮については、JCIのマスコンクリートのひび割れ制御指針2016のモデルを用いた場合を100%と表記し、湿潤養生ににより自己収縮が低減された場合等を想定し、自己収縮の量を75%、50%に低減した場合の計算結果も示している。

ひび割れのリスクは、引張強度を引張応力で除したひび割れ指数で示した。実施工において、ひび割れのリスクを評価する際の参考資料として提示するものである。

表-2. 2径間連続鋼鈑桁橋の例

外気温 (℃)	コンクリー ト打込み 温度 (°C)	熱膨張 係数 (x10 ^{-6/-} C)	JCI2016 自己収縮 (%)	最小ひ び割れ 指数の 材齢 (日)	温度応力 (MPa)	引張強度 (MPa)	ひび割れ指数(温度応力のみ)	要求するひ び割れ指数 を1.0とした場 合の合否	温度応力と施工 ステップ応力を足 し合わせた応力 (Mpa)	ひび割れ指 数(温度応 カ+施エス テップ応力)	要求するひ び割れ指数 を1.0とした場 合の合否
30	35	12	100	6	3.33	2.85	0.85	CI < 1	3.73	0.76	CI < 1
30	35	12	75	6	3.02	2.85	0.94	CI < 1	3.42	0.83	CI < 1
30	35	12	50	6	2.69	2.85	1.06	CI > 1	3.09	0.92	CI < 1
30	35	9	100	6	2.67	2.84	1.06	CI > 1	3.07	0.92	CI < 1
30	35	9	75	7	1.72	2.87	1.67	CI > 1	2.12	1.35	CI > 1
30	35	6	100	7	1.38	2.88	2.09	CI > 1	1.78	1.62	CI > 1
30	30	12	100	6	2.38	2.37	0.99	CI < 1	2.78	0.85	CI < 1
30	30	12	75	7	2.59	2.88	1.12	CI > 1	2.99	0.97	CI < 1
30	30	12	50	7	2.24	2.88	1.28	CI > 1	2.64	1.09	CI > 1
30	30	9	100	7	2.07	2.88	1.40	CI > 1	2.47	1.17	CI > 1
30	30	9	75	7	1.72	2.87	1.67	CI > 1	2.12	1.35	CI > 1
30	30	6	100	7	1.20	2.87	2.38	CI > 1	1.60	1.79	CI > 1
30	25	12	100	7	2.38	2.85	1.20	CI > 1	2.78	1.03	CI > 1
30	25	12	75	8	2.11	2.92	1.38	CI > 1	2.51	1.16	CI > 1
30	25	12	50	8	1.76	2.92	1.65	CI > 1	2.16	1.35	CI > 1
30	25	9	100	7	1.70	2.85	1.67	CI > 1	2.10	1.35	CI > 1
30	25	9	75	8	1.39	2.91	2.10	CI > 1	1.79	1.63	CI > 1
30	25	6	100	8	1.00	2.91	2.90	CI > 1	1.40	2.08	CI > 1
20	25	12	100	7	2.87	2.55	0.89	CI < 1	3.27	0.78	CI < 1
20	25	12	75	7	2.59	2.56	0.99	CI < 1	2.99	0.86	CI < 1
20	25	12	50	7	2.29	2.56	1.12	CI > 1	2.69	0.95	CI < 1
20	25	9	100	7	1.98	2.55	1.29	CI > 1	2.38	1.07	CI > 1
20	25	9	75	7	1.68	2.54	1.51	CI > 1	2.08	1.22	CI > 1
20	25	6	100	8	1.12	2.60	2.32	CI > 1	1.52	1.71	CI > 1
20	20	12	100	7	2.29	2.52	1.10	CI > 1	2.69	0.94	CI < 1
20	20	12	75	8	2.08	2.60	1.25	CI > 1	2.48	1.05	CI > 1
20	20	12	50	8	1.79	2.59	1.45	CI > 1	2.19	1.18	CI > 1
20	20	9	100	8	1.62	2.60	1.60	CI > 1	2.02	1.29	CI > 1
20	20	6	100	10	0.93	2.72	2.94	CI > 1	1.33	2.05	CI > 1
20	15	12	100	9	1.89	2.64	1.40	CI > 1	2.29	1.16	CI > 1
20	15	12	75	9	1.60	2.64	1.65	CI > 1	2.00	1.32	CI > 1
20	15	12	50	9	1.31	2.62	2.00	CI > 1	1.71	1.54	CI > 1
20	15	9	100	10	1.31	2.71	2.06	CI > 1	1.71	1.58	CI > 1
20	15	6	100	14	0.77	2.90	3.78	CI > 1	1.17	2.48	CI > 1
10	10	12	100	12	1.70	2.44	1.43	CI > 1	2.10	1.16	CI > 1
10	10	12	75	12	1.43	2.43	1.70	CI > 1	1.83	1.33	CI > 1
10	10	12	50	12	1.14	2.41	2.11	CI > 1	1.54	1.56	CI > 1
10	10	9	100	21	1.33	2.83	2.12	CI > 1	1.73	1.63	CI > 1
10	10	9	75	21	1.01	2.82	2.78	CI > 1	1.41	1.99	CI > 1
10	10	6	100	28	0.83	3.00	3.63	CI > 1	1.23	2.45	CI > 1
10	15	12	100	8	2.01	2.20	1.09	CI > 1	2.41	0.91	CI < 1
10	15	12	75	11	1.39	2.37	1.70	CI > 1	1.79	1.32	CI > 1
10	15	12	50	11	1.11	2.35	2.11	CI > 1	1.51	1.55	CI > 1
10	15	9	100	21	1.33	2.83	2.12	CI > 1	1.73	1.63	CI > 1
10	15	9	75	28	1.01	2.82	2.78	CI > 1	1.41	1.99	CI > 1
10	15	6	100	28	0.83	3.00	3.63	CI > 1	1.23	2.45	CI > 1

③単径間鋼鈑桁橋

表-3は、温度応力解析により、単径間の鋼桁橋のRC床版のひひ割れリスクを検討した結果をまとめたものであり、実橋モデルにより計算された結果である。

水結合材比が 45%で、高炉セメント B 種を用い、膨張材を使用した高耐久床版用の配合を設定している。膨張材が無い場合のひび割れリスクについても検討した。湿潤養生を行う材齢 28 日までの、最小のひび割れ指数を示している。

外気温, コンクリートの打込み温度, コンクリートの熱膨張係数の様々な組み合わせの中で、ひひ割れのリスクが高いものを抽出して計算した結果を示している。コンクリートの自己収縮については, JCI のマスコンクリートのひひ割れ制御指針 2016 のモデルを用いた場合を 100%と表記している。

ひび割れのリスクは、引張強度を引張応力で除したひび割れ指数で示した。

実施工において、ひび割れのリスクを評価する際の参考資料として提示するものである。

表-3. 単径間鋼鈑桁橋の例

外気温 (∘C)	コンクリート 打ち込み 温度 (°C)	膨張材	熱膨張 係数 (x10 ^{-6/-} C)	JCI2016 自己収縮 (%)	最小ひ び割れ 指数の 材齢 (日)	温度応力 (MPa)	引張強度 (MPa)	ひび割れ指数(温度応力 のみ)	要求するひ び割れ指数 を1.0とした場 合の合否
30	35	Х	12	1	28	2.1	3.72	1.8	CI > 1
30	35	0	12	1	28	1.0	3.72	3.5	CI > 1
30	35	0	9	1	28	0.6	3.72	6.0	CI > 1
30	30	Х	12	1	28	1.9	3.71	2.0	CI > 1
30	30	0	12	1	28	0.9	3.71	4.2	CI > 1
30	30	0	9	1	28	0.5	3.71	7.1	CI > 1
30	25	Х	12	1	28	1.7	3.71	2.2	CI > 1
30	25	0	12	1	28	0.7	3.71	5.0	CI > 1
30	25	0	9	1	28	0.4	3.71	8.4	CI > 1
20	15	Χ	12	1	28	1.60	3.50	2.2	CI > 1
20	15	0	12	1	28	0.58	3.50	6.0	CI > 1
20	15	0	9	1	28	0.34	3.50	10.3	CI > 1
20	20	X	12	1	28	1.63	3.51	2.1	CI > 1
20	20	0	12	1	28	0.69	3.51	5.1	CI > 1
20	20	0	9	1	28	0.39	3.51	9.0	CI > 1
20	25	Χ	12	1	28	1.86	3.51	1.9	CI > 1
20	25	0	12	1	28	0.80	3.51	4.4	CI > 1
20	25	0	9	1	28	0.45	3.51	7.8	CI > 1
10	10	Х	12	1	28	1.57	3.20	2.0	CI > 1
10	10	0	12	1	28	0.49	3.20	6.5	CI > 1
10	10	0	9	1	28	0.28	3.20	11.3	CI > 1
10	15	X	12	1	28	1.69	3.21	1.9	CI > 1
10	15	0	12	1	28	0.58	3.21	5.5	CI > 1
10	15	0	9	1	28	0.33	3.20	9.8	CI > 1

④単径間PCコンポ桁橋

表-4は、温度応力解析により、単径間の PC コンポ桁橋の RC 床版のひび割れリスクを検討した結果をまとめたものであり、実橋モデルにより計算された結果である。

水結合材比が 45%で、高炉セメント B 種を用い、膨張材を使用した高耐久床版用の配合を設定している。膨張材が無い場合のひび割れリスクについても検討した。湿潤養生を行う材齢 28 日までの、最小のひび割れ指数を示している。

外気温, コンクリートの打込み温度, コンクリートの熱膨張係数の様々な組み合わせの中で、ひひ割れのリスクが高いものを抽出して計算した結果を示している。コンクリートの自己収縮については, JCI のマスコンクリートのひひ割れ制御指針 2016 のモデルを用いた場合を 100%と表記している。

ひび割れのリスクは、引張強度を引張応力で除したひび割れ指数で示した。

実施工において、ひび割れのリスクを評価する際の参考資料として提示するものである。

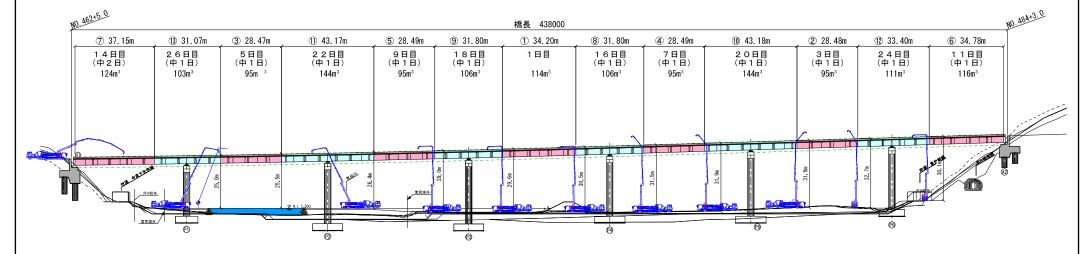
表-4. 単径間PCコンポ桁橋の例

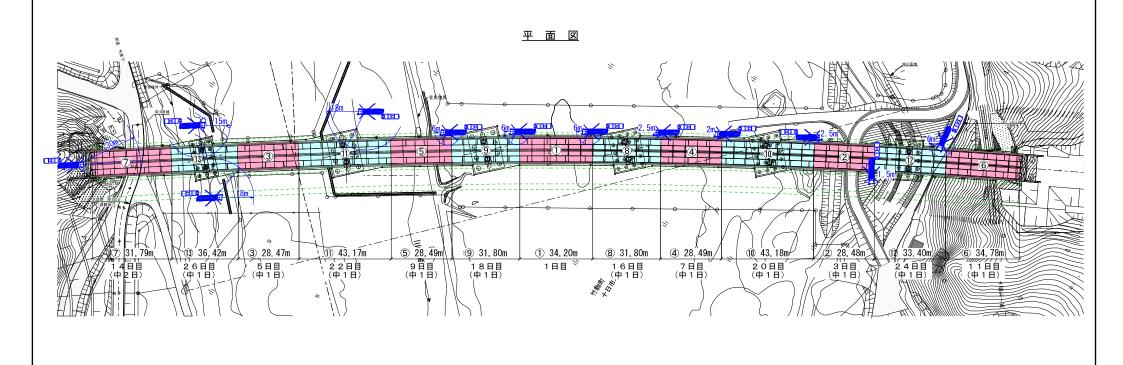
外気温 (∘C)	コンクリート 打ち込み 温度 (°C)	膨張材	熱膨張 係数 (x10 ^{-6/-} C)	JCI2016 自己収縮 (%)	最小ひ び割れ 指数の 材齢 (日)	温度応力 (MPa)	引張強度 (MPa)	ひび割れ指 数(温度応力 のみ)	要求するひ び割れ指数 を1.0とした場 合の合否
30	35	Х	12	1	6	3.17	2.59	0.8	CI < 1
30	35	0	12	1	28	2.06	3.23	1.57	CI > 1
30	35	0	9	1	28	1.40	3.23	2.30	CI > 1
30	30	X	12	1	6	2.84	2.56	0.9	CI < 1
30	30	0	12	1	15	1.08	3.02	2.8	CI > 1
30	30	0	9	1	28	0.99	3.23	3.3	CI > 1
20	20	X	12	1	7	2.3	2.32	1.0	CI = 1
20	20	0	12	1	28	1.41	3.06	2.2	CI > 1
20	20	0	9	1	28	0.94	3.06	3.3	CI > 1
20	25	X	12	1	6	2.46	2.24	0.9	CI < 1
20	25	0	12	1	28	1.60	3.08	1.9	CI > 1
20	25	0	9	1	28	1.06	3.08	2.90	CI > 1
10	10	Χ	12	1	28	2.49	2.84	1.1	CI > 1
10	10	0	12	1	28	0.90	2.84	3.1	CI > 1
10	10	0	9	1	28	0.58	2.84	4.9	CI > 1
10	15	X	12	1	28	2.72	2.84	1.0	CI = 1
10	15	0	12	1	28	1.07	2.85	2.7	CI > 1
10	15	0	9	1	28	0.61	2.84	4.6	CI > 1

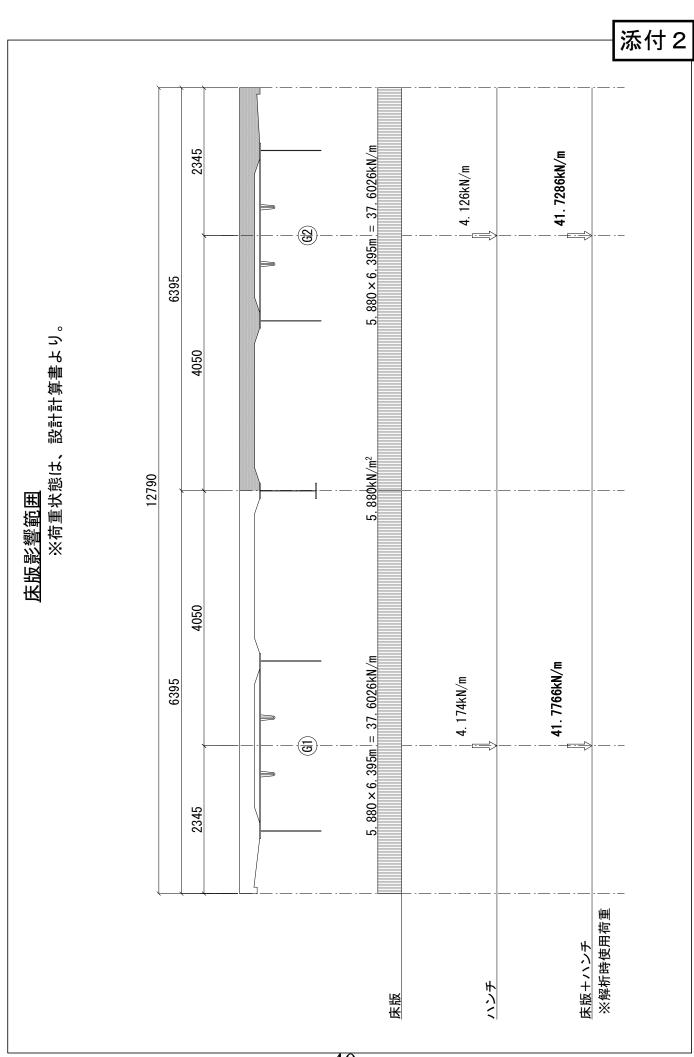
2-(3). 段階施工による応力解析の事例①(鋼7径間連続箱桁橋)

1. 打設検討の条件

床版コンクリートの打設順序を検討するにあたり、下記の条件にしたがって検討を行う。


- ① 床版打設範囲は作業条件を考慮し、1日の打設可能量 150m3以下とする。
- ② 2日目以降の打設順序については、すでに打設済みの床版に与える影響が最小になるように行う。
- ③ 打設順序・打設日は、添付1とする。
- ④ 打設前日までに打設された範囲はその材令に応じて桁と合成されている仮定し、打設段階ごとに作用する引張応力度の累計が、その材令における許容引張応力度以下となるように打設順序を設定する。
- ⑤ G1桁とG2桁について検討を行う。(添付2参照)
- ⑥ 床版荷重は、設計計算書から添付2のように仮定して検討を行う。
- ⑦ 打設順序によって生じるたわみ差が極力小さくなるように打設順序を配慮する。
- ⑧ 設計図とのたわみ差を比較するため、設計図のDslを設計値として検討を行う。
- ⑨ 計算ソフトは、 BECSYWIN (SLAB-Win32) を使用する。
- ⑩ 床版コンクリートには、高炉セメントを用いるため、材令による弾性係数実験データにて検討を行う。


【実験データ:材令と諸元値】


	ı			
材令	圧縮強度	弾性係数	弾性係数比	引張強度
(日)	(N/mm^2)	(kN/m^2)	Es/Ec	(N/mm^2)
1	0. 6	13298500	15. 0393	0. 35
2	9. 7	17846585. 2	11. 2066	0. 7
3	15	20507044. 5	9. 7527	1. 05
4	18. 8	22394670. 4	8. 9307	1. 63
5	21. 7	23858826. 9	8. 3826	1. 79
6	24. 1	25055129. 8	7. 9824	1. 92
7	26. 1	26066589. 4	7. 6727	2. 02
8	27. 9	26942755. 7	7. 4231	2. 12
9	29. 4	27715589. 1	7. 2162	2. 19
10	30. 8	28246613. 4	7. 0805	2. 26
11	32. 1	28625630. 2	6. 9867	2. 32
12	33. 2	28971645. 4	6. 9033	2. 38
13	34. 3	29289948. 6	6. 8283	2. 43
14	35. 2	29584651.3	6. 7603	2. 47
15	36. 1	29859013	6. 6981	2. 51
16	37	30115661.1	6. 6411	2. 55
17	37. 8	30356745. 1	6. 5883	2. 59
18	38. 5	30584045	6. 5394	2. 62
19	39. 2	30799052. 3	6. 4937	2. 66
20	39. 9	31003028. 7	6. 451	2. 69
21	40. 5	31110053. 6	6. 4288	2. 71
22	41. 2	31232150	6. 4037	2. 74
23	41. 7	31348818. 1	6. 3798	2. 77
24	42. 3	31460520. 1	6. 3572	2. 79
25	42. 8	31567661.5	6. 3356	2. 82
26	43. 4	31670600. 2	6. 315	2. 84
27	43. 9	31769653. 4	6. 2953	2. 86
28	44. 3	31865104	6. 2765	2. 88

<u>側 面 図</u>

2. 照査の条件

(1) 構造系

すでに打設された範囲の曲げ剛性は床版の材令に応じた完全合成断面として求める。

(2) 応力度の算出

床版表面に作用する応力度は、各材令および打設ステップごとに作用する応力度の累計とする。

$$\sigma_{\rm c} = \sum_{\rm i=1}^{\rm n} \frac{M_{\rm i} \times y_{\rm i}}{n_{\rm i} \times I_{\rm vi}} \quad ---- \quad \text{(1)} \label{eq:sigma_c}$$

ここで、

 σ_c :ステップ n における床版応力度 (N/mm^2)

M;:ステップiに作用する曲げモーメント(N.mm)

y_i:ステップiでの剛性断面図心から床版上面までの距離(mm)

n,:ステップiにおける弾性係数比(Es / Eci)

E。:鋼弾性係数 (N/mm²)

E_{si}:ステップiにおける材令に応じたコンクリート弾性係数 (N/mm²)

I_{vi}:ステップiにおける材令に応じた合成断面2次モーメント (N/mm²)

3. 検討結果

(1)発生応力度の検討結果

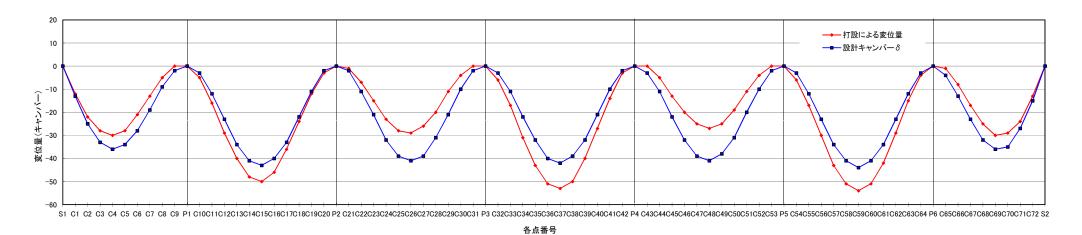
ブロック毎に、各ステップで生じるコンクリートの最大引張応力度を次頁「応力集計表」に示す。

(2) 変位量の検討結果

次頁「床版打設による変位量と設計キャンバーの比較」に、設計変位量と、打設による変位量 (STEP13) の比較を示す。

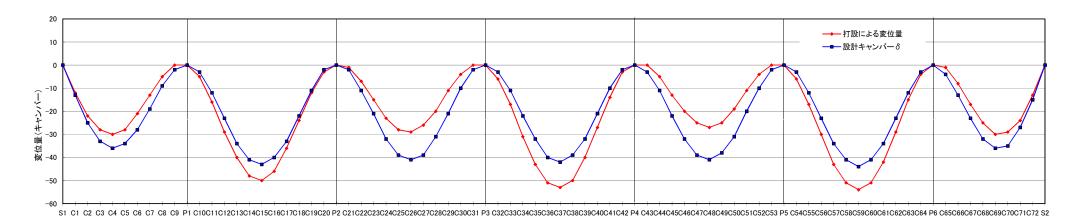
比較表から、設計キャンバーとの誤差が最大でも14mmしかなく、解析上の剛度の誤差を考慮すれば、妥当な値である。また、最少支間長54. Omを考えると、十分な許容誤差内である。

以上より、仮定した打設ステップにより、施工する。

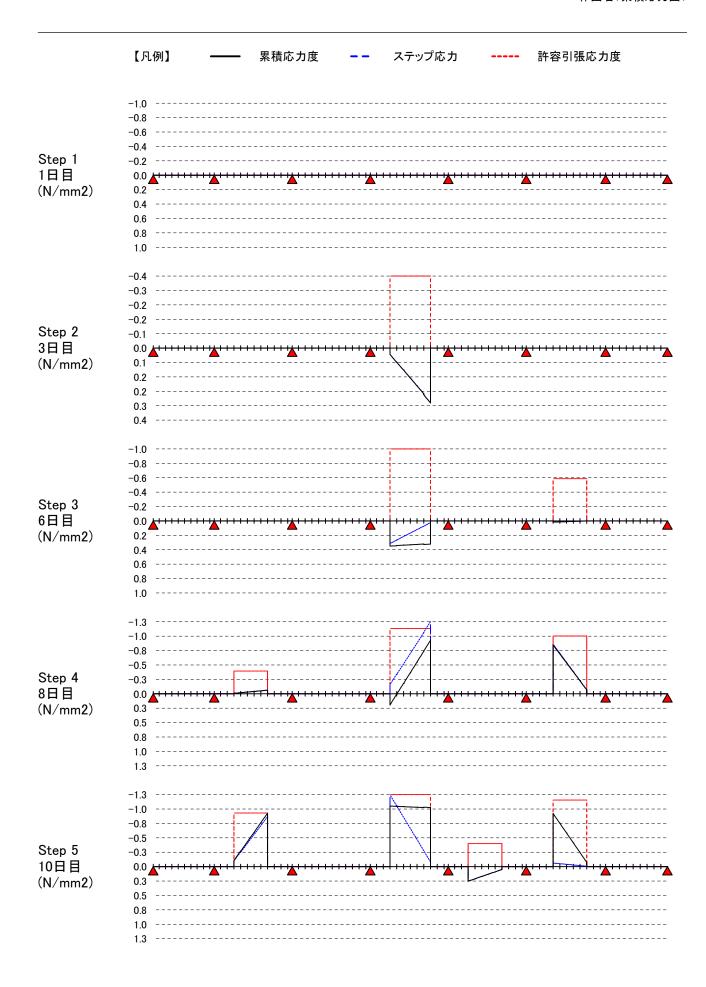

【応力集計表】

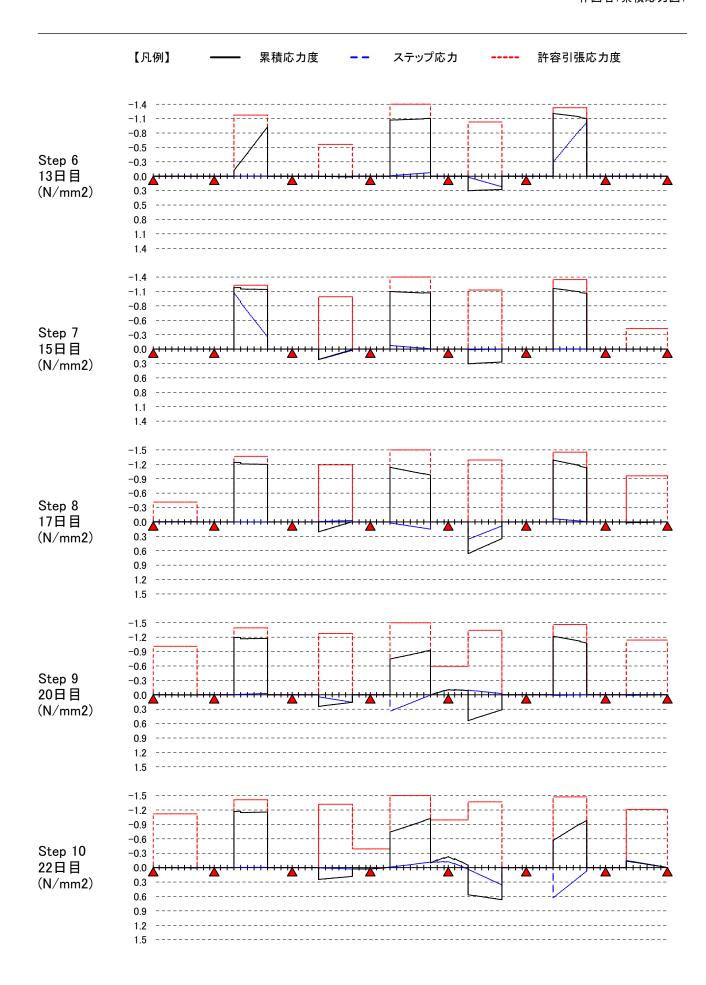
	箇所	ic.	STE	EP2	STE	P3	STE	P4	STE	EP5	STI	EP6	STI	P7	STE	P8	STE	P9	STE	P10	STE	P11	STE	P12	STE	P13
	固川	л	σ_{t2}	σ_{ta}	σ_{t3}	σ_{ta}	σ_{t4}	σ_{ta}	σ_{t5}	σ_{ta}	$\sigma_{ t t6}$	σ_{ta}	σ_{t7}	σ_{ta}	σ_{t8}	σ_{ta}	σ_{t9}	σ_{ta}	$\sigma_{\rm t10}$	σ_{ta}	σ_{t11}	σ_{ta}	σ_{t12}	σ_{ta}	σ_{t13}	σ_{ta}
	⑦ S1	1 ~ C7	-	-	-	-	-	-	-	-	-	-	【打	設】	-	-0. 40	-	-0. 93	-	-1.10	-0.09	-1. 21	-0.09	-1. 29	-	-1.36
	(13) C7	7 ~ C12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	【打	設】
	③ C12	2 ~ C17	-	-	【打	設】	-0.06	-0. 40	-0. 93	-0. 93	-0. 93	-1. 10	-1. 20	-1. 25	-1. 20	-1. 33	-1. 21	-1. 39	-1. 21	-1.43	-1.14	-1. 48	-1.14	-1. 52	-0. 76	-1. 55
	① C17	7 ~ C24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	【打	設】	-	-0. 40	-0. 12	-0. 93
	⑤ C24	4 ~ C29	1	-	1	-	-	1	【打	設】	-	-0. 40	-	-1.02	1	-1. 15	1	-1. 25	-	-1. 33	-	-1. 39	-	-1. 43	-	-1. 48
	9 C29	9 ~ C34	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	【打	設】	-0. 01	-0. 40	-0. 20	-0. 93	-0. 21	-1. 10	-0. 17	-1. 21
G	1 ① 034	4 ~ C40	-	-0. 40	ı	-0. 93	-0. 93	-1. 10	-1.04	-1. 21	-1.08	-1. 29	-1. 12	-1. 39	-1. 10	-1. 43	-0. 92	-1. 48	-1.04	-1.52	-1.04	-1. 55	-1.02	-1. 58	-1.02	-1. 61
	® C40	0 ~ C45	-	-	ı	ı	-	-	-	-	-	-	-	ı	【打	設】	-0. 10	-0. 40	-0. 22	-0. 93	-0. 15	-1. 10	-0. 13	-1. 21	-0. 14	-1. 29
	4 C45	5 ~ C50	1	-	ı	ı	【打	設】	-	-0. 40	-	-0. 93	-	-1. 15	ı	-1. 25	ı	-1.33	ı	-1.39	-	-1.43	ı	-1. 48	1	-1. 52
	① C50	0 ~ C57	-	-	ı	ı	-	-	-	-	-	-	-	ı	ı	-	ı	-	【打	設】	-0. 02	-0. 40	-0. 08	-0. 93	-0. 07	-1. 10
	② C57	7 ~ C62	【打	設】	ı	-0. 40	-0. 84	-0. 93	-0. 90	-1. 10	-1. 16	-1. 21	-1. 16	-1. 33	-1. 23	-1. 39	-1. 21	-1. 43	-1.00	-1. 48	-1.00	-1. 52	-0. 79	-1.55	-0. 79	-1. 58
	① C62	2 ~ C67	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	【打	設】	-	-0. 40
	© C67	i7 ~ S2	-	-	-	-	-	-	-	-	【打	設】	-	-0. 60	-	-1. 02	-	-1. 15	-0.14	-1. 25	-0. 13	-1. 33	-	-1. 39	-	-1. 43
	笛丽	if-	STE	EP2	STE	P3	STE	P4	STE	EP5	STI	EP6	STI	P7	STE	P8	STE	P9	STE	P10	STE	P11	STE	P12	STE	P13
	箇所 	у г	STE σ _{t2}	EP2 σ_{ta}	STE σ_{t3}	EP3 $\sigma_{\rm ta}$	STE $\sigma_{\rm t4}$	EP4 σ _{ta}	$\sigma_{ ext{t5}}$	EP5 σ _{ta}	$\sigma_{ ext{t6}}$	FP6 $\sigma_{\rm ta}$	SΤΙ σ _{t7}	EP7 σ_{ta}	STE σ_{t8}	iP8 σ _{ta}	STE $\sigma_{ ext{t9}}$	EP9 σ _{ta}	STE $\sigma_{\rm t10}$	P10 σ_{ta}	STE σ _{t11}	P11 σ_{ta}	STE σ _{t12}	P12 σ _{ta}	STE σ_{t13}	P13 σ_{ta}
		iπ - 1 ~ C7		1								1		σ_{ta}								1		1		1
	⑦ S1			1		σ_{ta}				σ_{ta}	$\sigma_{ t t6}$	σ_{ta}	σ_{t7}	σ_{ta}	σ_{t8}	σ_{ta}	σ_{t9}	σ_{ta}		σ_{ta}	σ_{t11}	σ_{ta}	$\sigma_{\rm t12}$	σ_{ta}	$\sigma_{\rm t13}$	σ _{ta}
	⑦ S1 ③ C7	1 ~ C7	σ _{t2}	σ _{ta}	σ _{t3}	σ _{ta} –	σ _{t4}	σ _{ta}	σ _{t5}	σ _{ta}	σ _{t6}	σ _{ta} –	σ _{t7}	σ _{ta} 設】	σ _{t8}	σ _{ta}	σ _{t9}	σ _{ta}	σ _{t10}	σ _{ta} -1. 10	σ _{t11}	σ _{ta} -1. 21	σ _{t12}	σ _{ta} -1. 29	σ _{t13}	σ _{ta}
	⑦ S1 ③ C7 ③ C12	1 ~ C7 7 ~ C12	σ _{t2} –	σ _{ta} –	σ _{t3} - -	σ _{ta} –	σ _{t4} -	σ _{ta} –	σ _{t5} 0.90	σ _{ta} 0.93	σ _{t6} –	σ _{ta} –	σ _{t7} 【打	σ _{ta} 設】 -	σ _{t8} -	σ _{ta} -0.40	σ _{t9} - -	σ _{ta} -0. 931. 39	σ _{t10} –	σ _{ta} -1.10	σ _{t11} -0.11	σ _{ta} -1. 211. 48	σ _{t12} -0.13	σ _{ta} -1. 29 -	σ _{t13} - 【打	σ _{ta} −1.36
	⑦ S1 ③ C7 ③ C12 ① C17	1 ~ C7 7 ~ C12 2 ~ C17	σ _{t2} –	σ _{ta} –	σ _{t3} - -	σ _{ta} –	σ _{t4} -	σ _{ta} –	σ _{t5} - -	σ _{ta} 0.93	σ _{t6} -	σ _{ta} –	σ _{t7} 【打	σ _{ta} 設】 -	σ _{t8} -	σ _{ta} -0.40	σ _{t9} - -	σ _{ta} -0.93	σ _{t10} –	σ _{ta} -1.10	σ _{t11} -0.111.17	σ _{ta} -1. 211. 48	σ _{t12} -0.13	σ _{ta} -1. 291. 52	σ _{t13} - 【打 -0.94	σ _{ta} -1.36 設 -1.55
	⑦ S1 ③ C7 ③ C12 ① C17 ⑤ C24	1 ~ C7 7 ~ C12 2 ~ C17 7 ~ C24	σ _{t2} –	σ _{ta} –	σ _{t3} [打	σ _{ta} 設]	σ _{t4} 0.06	σ _{ta} –	σ _{t5} 0.90	σ _{ta} 0.93	σ _{t6} -	σ _{ta} 1.10	σ _{t7} 【打 - -1. 23	σ _{ta} 設] - -1.25	σ _{t8} -	σ _{ta} -0. 401. 33	σ _{t9} 1. 24	σ _{ta} -0. 931. 391. 25	σ _{t10} –	σ _{ta} -1.101.43	σ _{t11} -0.111.17	σ _{ta} -1.211.48	σ _{t12} -0.13	σ _{ta} -1. 291. 52 -0. 40	σ _{t13} - 【打 -0.94 -0.06	σ _{ta} -1. 36 設] -1. 55 -0. 93
G	(7) S1 (3) C7 (3) C12 (1) C17 (5) C24 (9) C29 (2) (1) C34	1 ~ C7 7 ~ C12 2 ~ C17 7 ~ C24 4 ~ C29 9 ~ C34 4 ~ C40	σ _{t2} –	σ _{ta} –	σ _{t3}	σ _{ta} 設 -	σ _{t4} 0.06	σ _{ta} –	σ _{t5} 0.90	σ _{ta} 0.93	σ _{t6} -	σ _{ta} 1.10	σ _{t7} 【打 - -1. 23 -	σ _{ta} 設〕 - -1. 25 - -1. 02	σ _{t8} 1. 231. 09	σ _{ta} -0. 401. 331. 151. 43	σ _{t9} 1. 241. 240. 93	σ _{ta} -0. 931. 391. 25	σ _{t10} 1. 250. 94	σ _{ta} -1. 101. 431. 33 -0. 40 -1. 52	σ _{t11} -0.111.17 【打	σ _{ta} -1. 211. 48 設] -1. 39	σ _{t12} -0. 131. 170. 12 -1. 07	σ _{ta} -1. 291. 52 -0. 40 -1. 43	σ _{t13} - [打 -0. 94 -0. 060. 10 -1. 05	σ _{ta} -1. 36 設] -1. 55 -0. 93 -1. 48 -1. 21 -1. 61
G	(7) S1 (3) C7 (3) C12 (1) C17 (5) C24 (9) C29 (2) (1) C34 (8) C40	1 ~ C7 7 ~ C12 2 ~ C17 7 ~ C24 4 ~ C29 9 ~ C34 4 ~ C40 0 ~ C45	σ _{t2} –	σ _{ta}	σ _{t3} - - - 【打 - -	σ _{ta} 設	σ _{t4} 0.060.89	σ _{ta} 0.401.10	σ _{t5} 0.90 - 【打	σ _{ta} 0.93 - 設]	σ _{t6} 0.90	σ _{ta} 1.100.40	σ _{t7} 【打1.23	σ _{ta} [the state of the state	σ _{t8} 1.23	σ _{ta} -0. 401. 331. 151. 43	σ _{t9} 1. 24	σ _{ta} -0.931.391.25	σ _{t10} 1.25	σ _{ta} -1. 101. 431. 33 -0. 40 -1. 52 -0. 93	σ _{t11} -0.111.171.170.12	σ _{ta} -1. 211. 48 設] -1. 39 -0. 93 -1. 55 -1. 10	σ _{t12} -0.131.170.12	σ _{ta} -1. 291. 52 -0. 40 -1. 43 -1. 10	σ _{t13} 0. 94 -0. 060. 10	σ _{ta} -1.36 設] -1.55 -0.93 -1.48 -1.21 -1.61 -1.29
G	(7) S1 (3) C7 (3) C12 (1) C17 (5) C24 (9) C29 (2) (1) C34 (8) C40 (4) C45	1 ~ C7 7 ~ C12 2 ~ C17 7 ~ C24 4 ~ C29 9 ~ C34 4 ~ C40 0 ~ C45 5 ~ C50	σ _{t2} –	σ _{ta}	σ _{t3} 【打	σ _{ta}	σ _{t4} 0.06	σ _{ta} 0.401.10	σ _{t5} 0.90 - (打1.05	σ _{ta} 0.931.21	σ _{t6} 0.901.09	σ _{ta} 1.100.40	σ _{t7} 【打 - -1. 23 - - - -1. 13	σ _{ta} 設] -1. 25 - -1. 02 - -1. 39	σ _{t8} 1. 231. 09	σ _{ta} -0. 401. 331. 151. 43	σ _{t9} 1. 241. 240. 93	σ _{ta} -0.931.391.25	σ _{t10} 1. 250. 94 -0. 28	σ _{ta} -1.101.431.33 -0.40 -1.52 -0.93 -1.39	σ _{t11} -0.111.171.170.12 -1.07 -0.24 -	σ _{ta} -1.211.48 (2) -1.39 -0.93 -1.55 -1.10 -1.43	σ _{t12} -0.131.170.12 -1.07 -0.22 -	σ _{ta} -1. 291. 52 -0. 40 -1. 43 -1. 10 -1. 58 -1. 21 -1. 48	σ _{t13} - [‡7 -0. 94 -0. 060. 10 -1. 05 -0. 23	σ _{ta} -1. 36 設] -1. 55 -0. 93 -1. 48 -1. 21 -1. 61
G	(7) S1 (3) C7 (3) C12 (1) C17 (5) C24 (9) C29 (2) (1) C34 (8) C40 (4) C45	1 ~ C7 7 ~ C12 2 ~ C17 7 ~ C24 4 ~ C29 9 ~ C34 4 ~ C40 0 ~ C45	σ _{t2}	σ _{ta}	σ _{t3}	σ _{ta}	σ _{t4} 0.060.89	σ _{ta} 0.401.10	σ _{t5} 0.90 - 【打1.05	で ta - -0.93 - 設] -1.21	σ _{t6} 0.901.09	σ _{ta} - -1.10 - -0.40 - -1.29 - -0.93	σ _{t7} 【打1.231.13	σ _{ta} [the state of the state	σ _{t8} 1. 231. 09	σ _{ta} -0.401.331.151.43	σ _{t9} 1.241.93 -0.04	σ _{ta} -0. 931. 391. 25	σ _{t10} 1.250.94 -0.28	σ _{ta} -1.101.431.33 -0.40 -1.52 -0.93 -1.39	σ _{t11} -0.111.17 【打0.12 -1.07 -0.24	σ _{ta} -1. 211. 48 (Ω) -1. 39 -0. 93 -1. 55 -1. 10 -1. 43 -0. 40	σ _{t12} -0.131.170.12 -1.07 -0.22 -0.07	σ _{ta} -1. 29 -1. 52 -0. 40 -1. 43 -1. 10 -1. 58 -1. 21	σ _{t13} - [打] -0. 94 -0. 060. 10 -1. 05 -0. 23	σ _{ta} -1. 36 (C) -1. 55 -0. 93 -1. 48 -1. 21 -1. 61 -1. 29 -1. 52 -1. 10
G	7 S1 (3 C7 (3 C12 (1) C17 (5 C24 (9 C29 (1) C34 (8 C40 (4) C45 (1) C50	1 ~ C7 7 ~ C12 2 ~ C17 7 ~ C24 4 ~ C29 9 ~ C34 4 ~ C40 0 ~ C45 5 ~ C50	σ _{t2}	σ _{ta}	σ _{t3} (打	σ _{ta}	σ _{t4} 0.060.89	σ _{ta} 0.401.10	σ _{t5} 0.90 - 【打1.05 -	で ta - -0.93 - 設] -1.21	σ _{t6} 0.901.09	σ _{ta} 1.100.401.29	σ _{t7} 【打1.231.13	σ _{ta} で ta で	σ _{t8} 1.231.09 [計]	σ _{ta} -0.401.331.151.43	σ _{t9} 1. 240. 93 -0. 04	σ _{ta} -0. 931. 391. 25	σ _{t10} 1. 250. 94 -0. 28	σ _{ta} -1.101.431.33 -0.40 -1.52 -0.93 -1.39	σ _{t11} -0.111.171.170.12 -1.07 -0.24 -	σ _{ta} -1.211.48 (2) -1.39 -0.93 -1.55 -1.10 -1.43	$\begin{array}{c} \sigma_{\rm t12} \\ -0.13 \\ - \\ -1.17 \\ - \\ -0.12 \\ -1.07 \\ -0.22 \\ - \\ -0.07 \\ -0.80 \end{array}$	σ _{ta} -1. 29 -1. 52 -0. 40 -1. 43 -1. 10 -1. 58 -1. 21 -1. 48 -0. 93 -1. 55	σ _{t13} - [‡7 -0. 94 -0. 060. 10 -1. 05 -0. 23	σ _{ta} -1. 36 (C) -1. 55 -0. 93 -1. 48 -1. 21 -1. 61 -1. 29 -1. 52 -1. 10 -1. 58
G	7 S1 (3 C7 (3 C12 (1) C17 (5 C24 (9 C29 (1) C34 (8 C40 (4) C45 (1) C50 (2 C57	1 ~ C7 7 ~ C12 2 ~ C17 7 ~ C24 4 ~ C29 9 ~ C34 4 ~ C40 0 ~ C45 5 ~ C50 0 ~ C57	σ _{t2}	σ _{ta}	σ _{t3} (打	σ _{ta}	σ _{t4} 0.060.891.89	σ _{ta} 0.401.10 -	σ _{t5} 0.90 - 【打1.05	σ _{ta} 0.93 - 設 1.210.40	σ _{t6} 0.901.091.09	σ _{ta} 1.100.401.290.931.21	σ _{t7} 【打1. 231. 13	σ _{ta} ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	σ _{t8} 1. 231. 09 【打	σ _{ta} -0. 401. 331. 151. 43	σ _{t9} 1. 240. 93 -0. 04	σ _{ta} -0.931.391.25	σ _{t10} 1.250.94 -0.28	σ _{ta} -1. 101. 431. 33 -0. 40 -1. 52 -0. 93 -1. 39	σ _{t11} -0.111.171.170.12 -1.07 -0.240.01	σ _{ta} -1. 211. 48 (Ω) -1. 39 -0. 93 -1. 55 -1. 10 -1. 43 -0. 40	σ _{t12} -0.131.170.12 -1.07 -0.22 -0.07	σ _{ta} -1. 29 -1. 52 -0. 40 -1. 43 -1. 10 -1. 58 -1. 21 -1. 48 -0. 93 -1. 55	σ _{t13} 0.94 -0.060.10 -1.05 -0.230.07	σ _{ta} -1. 36 (C) -1. 55 -0. 93 -1. 48 -1. 21 -1. 61 -1. 29 -1. 52 -1. 10

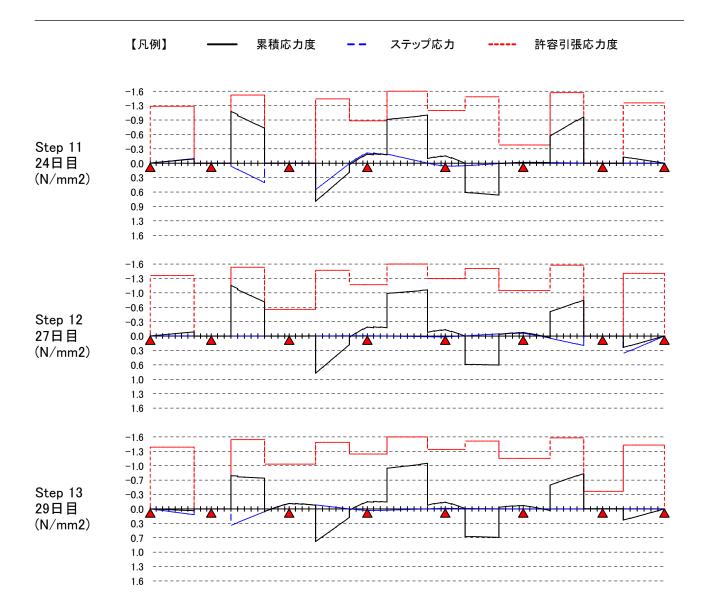
※圧縮応力度は、+とする。

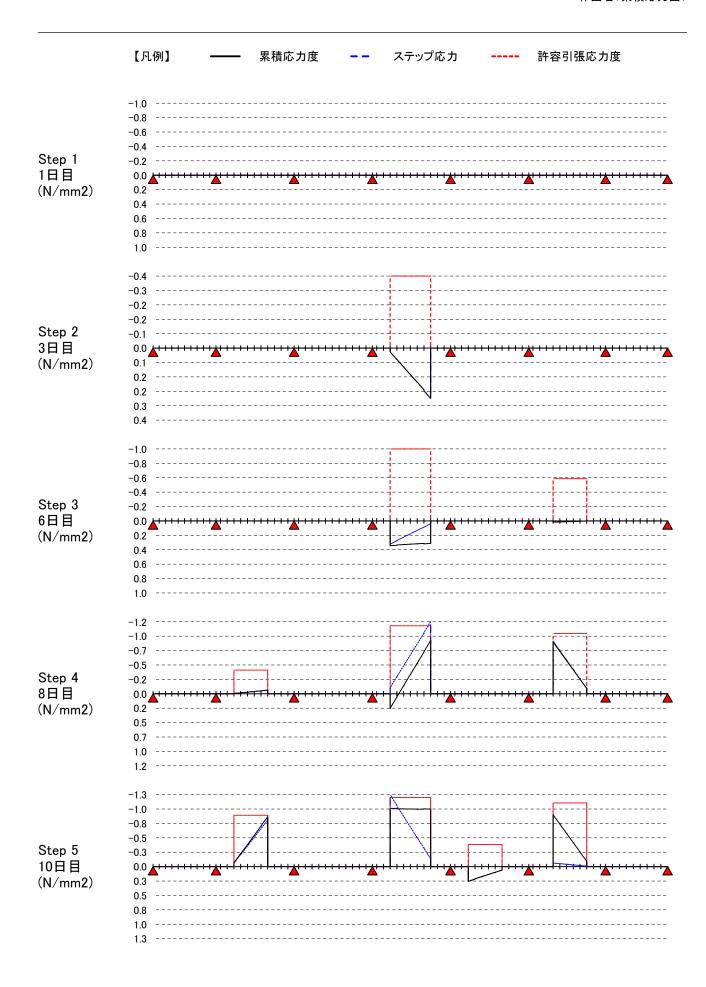

【床版打設による変位量と設計キャンバーの比較(G1)】

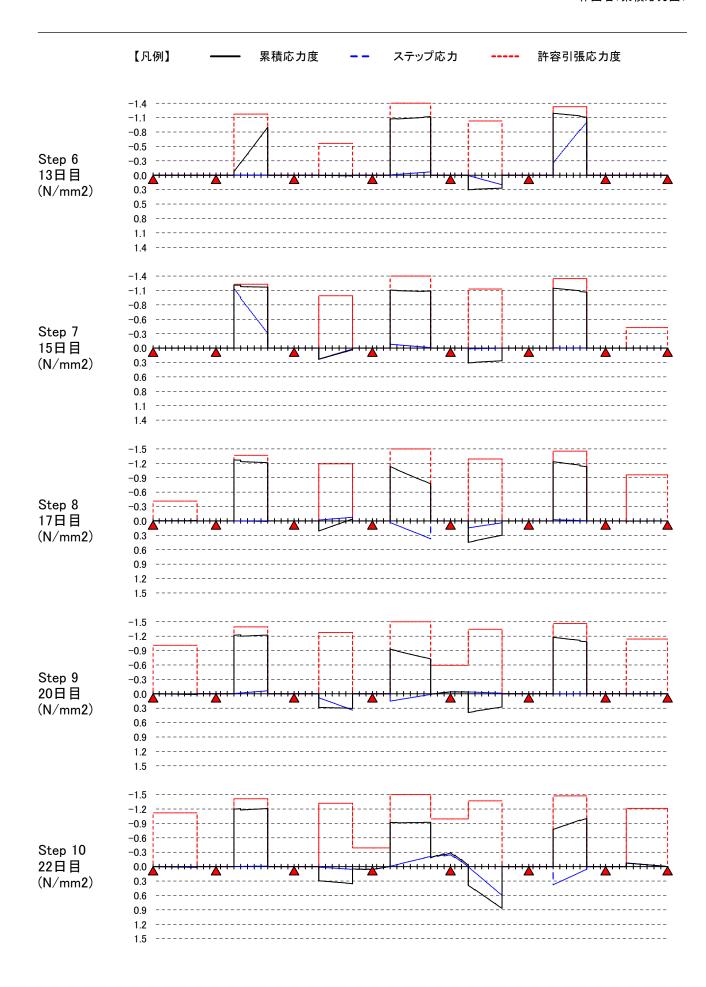
																					G	1																				
	S1	C1	C2	C3	C4	C5	C6	C7	C8	C9	P1	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	P2	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30	C31	P3	C32	C33	C34	C35	C36	C37	C38
打設による変位量	0	-12	-22	-28	-30	-28	-21	-13	-5	0	0	-5	-16	-29	-40	-48	-50	-46	-36	-24	-12	-3	0	-1	-7	-15	-23	-28	-29	-26	-20	-11	-4	0	0	-6	-17	-31	-43	-51	-53	-50
設計キャンバーDsl	0	13	25	33	36	34	28	19	9	2	0	3	12	23	34	41	43	40	33	22	11	2	0	2	11	21	32	39	41	39	31	21	10	2	0	3	11	22	32	40	42	39
設計キャンバーδ	0	-13	-25	-33	-36	-34	-28	-19	-9	-2	0	-3	-12	-23	-34	-41	-43	-40	-33	-22	-11	-2	0	-2	-11	-21	-32	-39	-41	-39	-31	-21	-10	-2	0	-3	-11	-22	-32	-40	-42	-39
設計キャンバーとの誤差	0	1	3	5	6	6	7	6	4	2	0	-2	-4	-6	-6	-7	-7	-6	-3	-2	-1	-1	0	1	4	6	9	11	12	13	11	10	6	2	0	-3	-6	-9	-11	-11	-11	-11
																			G	1																						
	C39	C40	C41	C42	P4	C43	C44	C45	C46	C47	C48	C49	C50	C51	C52	C53	P5	C54	C55	C56	C57	C58	C59	C60	C61	C62	C63	C64	P6	C65	C66	C67	C68	C69	C70	C71	C72	S2				
打設による変位量	-40	-27	-14	-3	0	0	-5	-13	-20	-25	-27	-25	-19	-11	-4	0	0	-6	-17	-30	-43	-51	-54	-51	-42	-29	-15	-4	0	-1	-8	-17	-25	-30	-29	-24	-13	0				
設計キャンバーDsl	32	21	10	2	0	3	11	22	32	39	41	38	31	20	10	2	0	3	12	23	34	41	44	41	34	23	12	3	0	4	13	23	32	36	35	27	15	0				
設計キャンバーδ	-32	-21	-10	-2	0	-3	-11	-22	-32	-39	-41	-38	-31	-20	-10	-2	0	-3	-12	-23	-34	-41	-44	-41	-34	-23	-12	-3	0	-4	-13	-23	-32	-36	-35	-27	-15	0				
設計キャンバーとの誤差	-8	-6	-4	-1	0	3	6	9	12	14	14	13	12	9	6	2	0	-3	-5	-7	-9	-10	-10	-10	-8	-6	-3	-1	0	3	5	6	7	6	6	3	2	0				

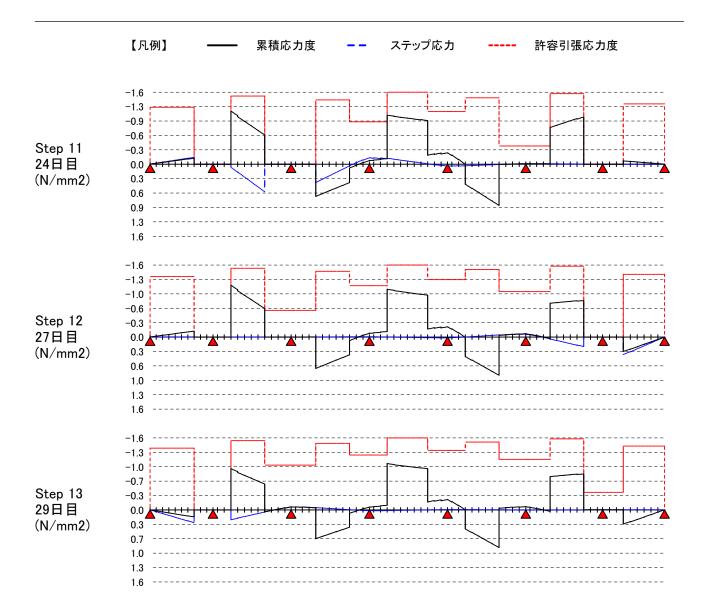



【床版打設による変位量と設計キャンバーの比較(G1)】


																					G	1																			
	S1	C1	C2	C3	C4	C5	C6	C7	C8	C9	P1	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	P2	C21 C2	2 C2	23 C24	C25	C26	C27	C28	C29	C30	C31	P3	C32	C33	C34	4 C3	5 C3	G C37	C38
打設による変位量	0	-12	-22	-28	-30	-28	-21	-13	-5	0	0	-5	-16	-29	-40	-48	-50	-46	-36	-24	-12	-3	0	-1 -	7 -1	5 -23	-28	-29	-26	-20	-11	-4	0	0	-6	-17	-31	1 -4	3 -5	− 53	-50
設計キャンバーDsl	0	13	25	33	36	34	28	19	9	2	0	3	12	23	34	41	43	40	33	22	11	2	0	2 1	1 2	1 32	39	41	39	31	21	10	2	0	3	11	22	32	2 40	42	39
設計キャンバーδ	0	-13	-25	-33	-36	-34	-28	-19	-9	-2	0	-3	-12	-23	-34	-41	-43	-40	-33	-22	-11	-2	0	-2 -1	1 -2	-32	-39	-41	-39	-31	-21	-10	-2	0	-3	-11	-22	2 -3	2 -4	-42	-39
設計キャンバーとの誤差	0	1	3	5	6	6	7	6	4	2	0	-2	-4	-6	-6	-7	-7	-6	-3	-2	-1	-1	0	1 4	. 6	9	11	12	13	11	10	6	2	0	-3	-6	-9	-1	1 -1	-11	-11
																			G	1																					
	C39	C40	C41	C42	P4	C43	C44	C45	046	C47	040	040																									_				
						0.10	077	040	040	047	U48	C49	C50	C51	C52	C53	P5	C54	C55	C56	C57	C58	C59	C60 C6	1 C6	62 C63	C64	P6	C65	C66	C67	C68	C69	C70	C71	C72	S2				
打設による変位量	-40	-27	-14		0	0		-13								C53 0	P5 0			C56 -30			C59 -54			62 C63 19 -15		P6 0	C65 -1	_	C67		C69 -30			-	S2 0				
打設による変位量 設計キャンバーDsl	-40 32		-14 10		0	0			-20		-27	-25				0 0 2	P5 0 0			-30	-43	-51	-54		2 -2	9 -15		P6 0 0	C65 -1 4	_		-				-	0				
	32		10	-3 2	0	0	-5 11	-13	-20 32	-25 39	-27 41	-25 38	-19 31	-11 20		0	0	-6 3	-17 12	-30	-43 34	-51 41	-54 44	-51 -4	2 -2 4 2	.9 –15 3 12	-4 3	0	-1 4	-8 13	-17 23	-25 32	-30	-29 35	-24 27	-13 15	0				




各点番号



2-(4). 段階施工による応力解析の事例②(鋼2径間連続鈑桁橋)

1. 要旨

本橋は、鋼 2 径間連続非合成箱桁橋であり床版を順次分割施工される。このとき打設の順序によっては、その自重によって既設打設部にひび割れが発生する場合がある。(リバンド応力による割れとも言われる)

今回打設計画を行うにあたり、床版打設順序検討プログラム 『COMPO』 を用いて、床版ひび割れに影響がないか検討を行う。

2. 解析条件

2.1 諸条件

◆形 式 : 鋼2径間連続非合成箱桁橋

◆支 間 : 53.000m + 70.000m (CL上)

◆床 版 : 床版厚 230mm

コンクリート強度 σ_{ck} = 24 N /mm²

普通コンクリート

◆断面諸元 : 断面構成図より実剛度を使用

◆安全率 : 2.00

◆短期割増 : 1.25

2.2 床版諸元

床版打設では、コンクリートの材令強度、ヤング率の変化、クリープ乾燥収縮を考慮して時経列に 計算し打設進行中に当該引張強度に対して発生引張応力が超過した場合ひび割れが発生するとして いる。 本検討では、コンクリート標準示方書にて検討を行う。

(1) 材令と発現強度 : コンクリート標準示方書(2) 材令と発現ヤング率 : コンクリート標準示方書

(3) 引張強度式 : コンクリート標準示方書

 $\sigma t = c\sqrt{\sigma c}$

全てコンクリート標準示方書により養生日数と発現強度を逐次計算している。

2.3 引張強度

引張許容応力度は以下のとおり算出した。

コンクリート標準示方書 (2007年度版 施工編)

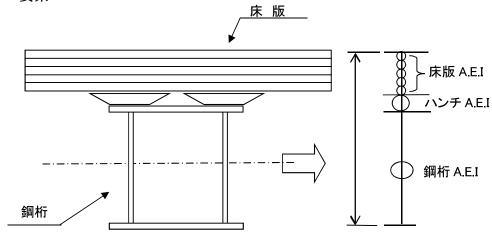
コンクリート基準強度 σ ck= 24 N/mm²

f'ck(t) = [t/(a+bt)]df'ck(i)

 $ftk(t) = c[f'ck(t)]^{\hat{}}(1/2)$

 $ftd(t) = ftk(t) / \gamma c$

ここで a, b, c,d:セメント定数 (普通ポルトランドセメント)


a=4.5 b=0.95

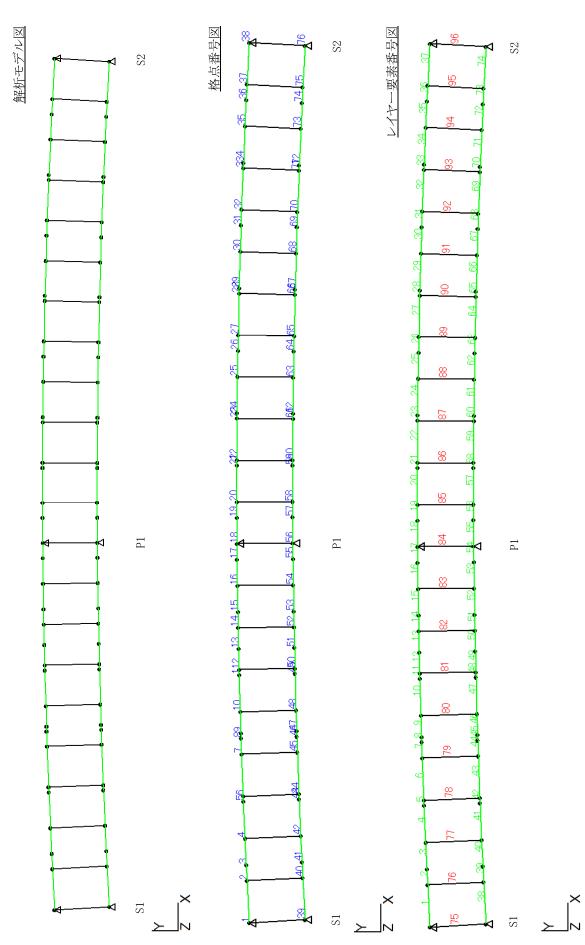
c = 0.44 d = 1.11

許容引張応力度

 $\sigma \text{ ta} = \text{ftk}(t)/2.00 \times 1.25$

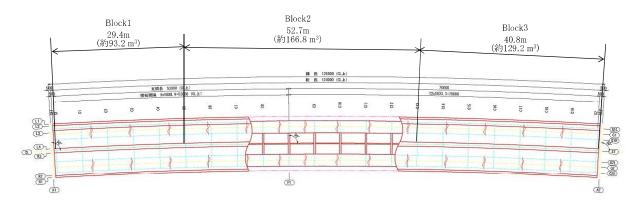
2.4 レイヤ - 要素

レイヤー要素とは、部材断面を積層にスライスし各部位に、A、E、I の特性を入力することで断面方向に異なる材料特性を有する構造を梁要素に置換する要素である。

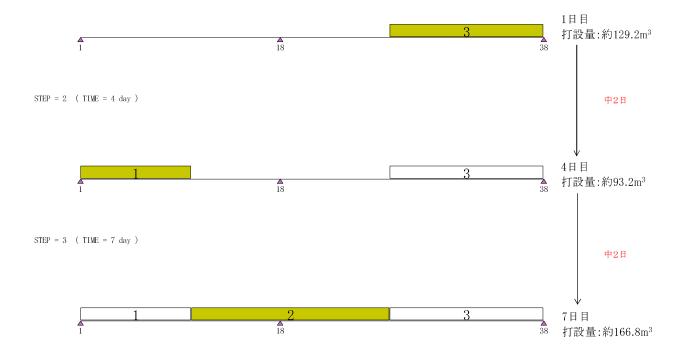

ここでは、レイヤー要素を主桁に適用し、床版にはコンクリート特性、鋼桁には鋼材の特性を入力している。床版に鉄筋が存在するが、解析上これを無視した断面にて検討を行う。

2.5 有効幅

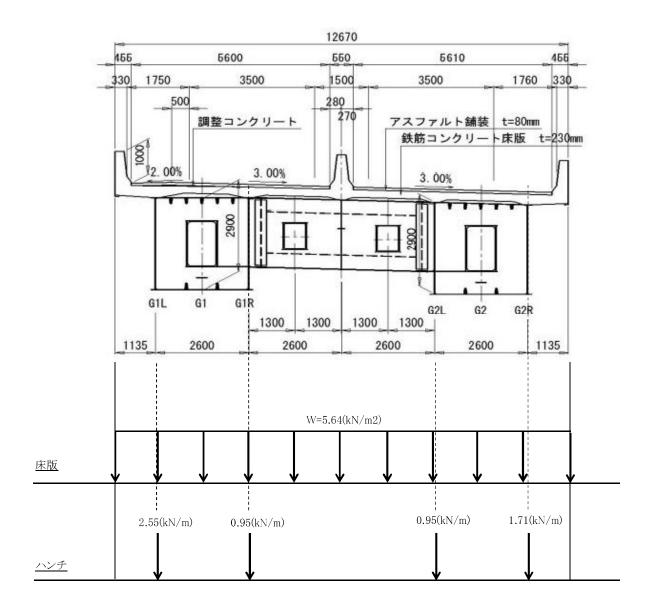
床版有効幅の計算は、平成24年道路橋示方書12.2.4の規定に沿って計算を行う。


2.6 解析モデル

2.7 解析ステップ


打設ブロック割及び打設ステップを以下に示す。

※打設ブロック量は、床版+ハンチを橋長及び幅員から算出した概算値である。


<床版打設順序>

STEP = 1 (TIME = 1 day)

2.8 荷重載荷図

荷重載荷図を以下に示す。

床版重量 : 単位体積重量(24.5kN/m³)×床版断面積

床版断面積は、線形データ及び床版厚より、内部計算によって

線荷重として載荷する。

ハンチ重量 : 単位体積重量(24.5kN/m³)×ハンチ断面積

ハンチ重量は、ハンチ断面積より内部計算によって線荷重として載荷する。

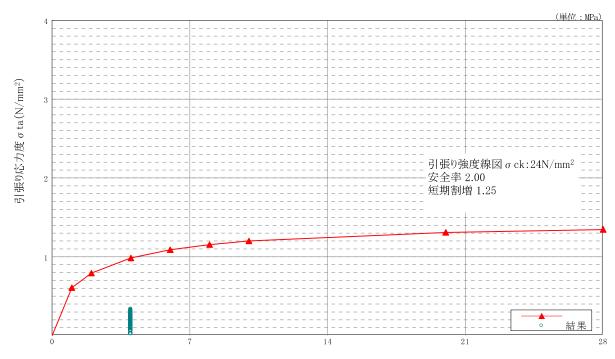
3. 解析結果

床版打設順序検討においては着目床版に対し隣接スパンの床版が打設されるとその床版の重量によって着目 (既設)床版にひび割れが発生する場合がある。

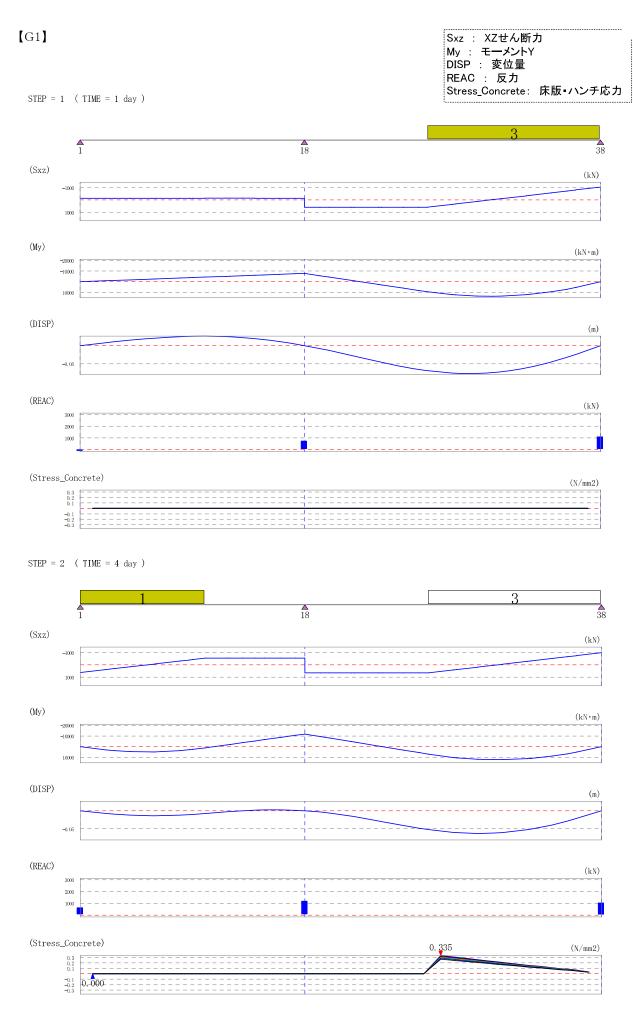
今回検討を行った結果、床版に発生する応力度は全て許容値内であり、ひび割れが発生しない結果となった。 しかし、実際には現地の環境及び養生方法等によっては厳しくなる可能性がある為、十分留意して施工を行う必 要がある。

表3.1 床版ブロック別発生応力度一覧表

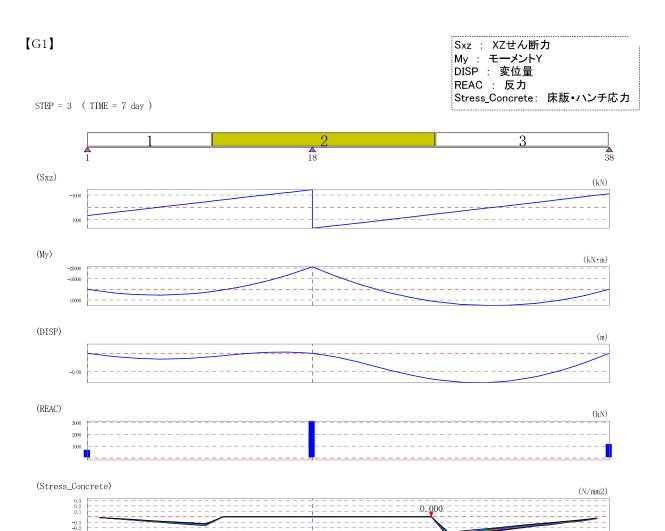
床版No.	1	2	3
STEP	2	3	2
材令日数	0	0	4
$\sigma c (N/mm^2)$	0.00	0.00	0.34
fctm (N/mm ²)	0.00	0.00	0.99
判定	0	0	0

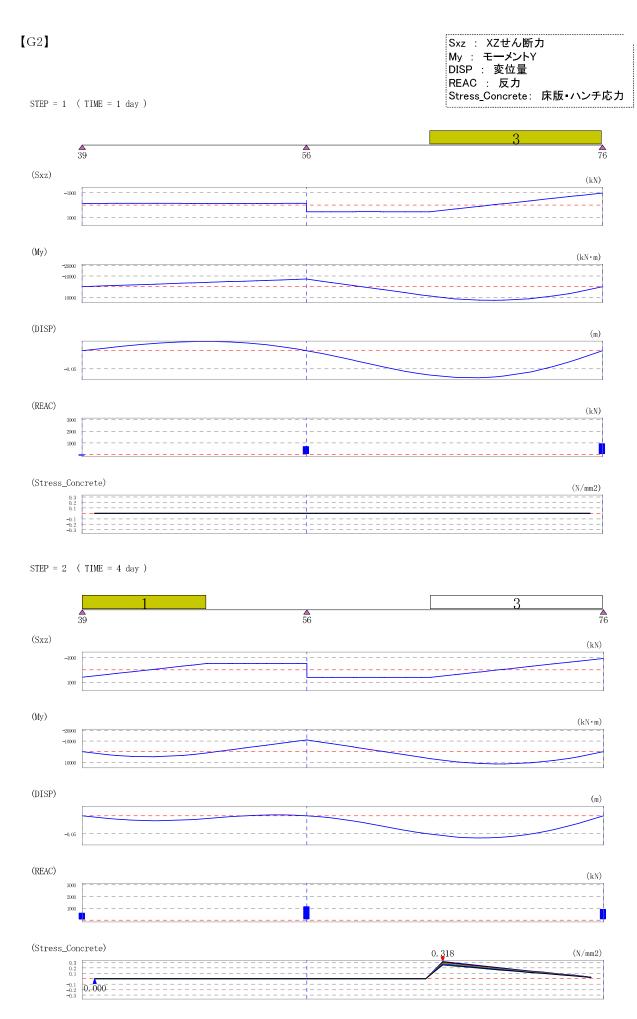

STEP: 最大応力度発生ステップ

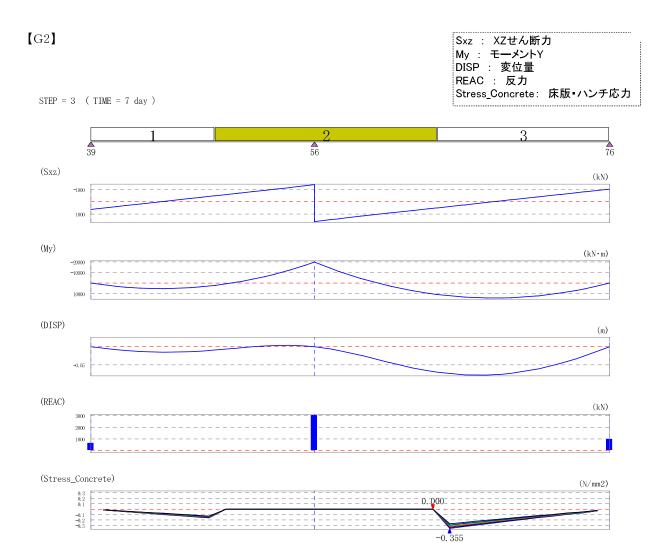
判定 \bigcirc : 発生応力は許容値を満足している。(σ c < fctm) 判定 \triangle : 発生応力は安全率を満足していない。(σ c > fctm/F < fctm) 材令日数: 床版ブロック経過材令日数

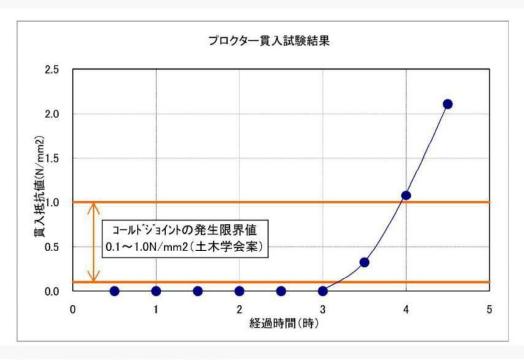

σc: 発生引張り応力度(N/mm²) 判定 ×: 発生応力は許容値を満足していない。(σc > fctm)

fctm: 許容引張り応力度(N/mm²) (ひび割れが発生する。)


養生時間 - コンクリート引張強度 線図

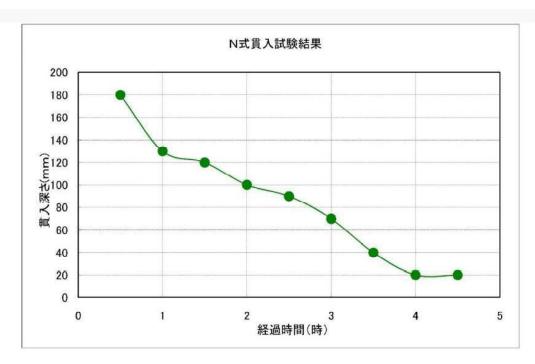

床版ブロック材令日数


ステップ別床版応力図 58 図1


-0. 371

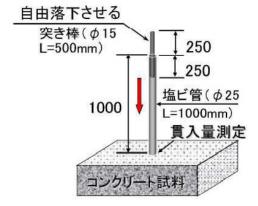
ステップ別床版応力図 **60** 図3

3-(1). N式貫入試験の試験方法

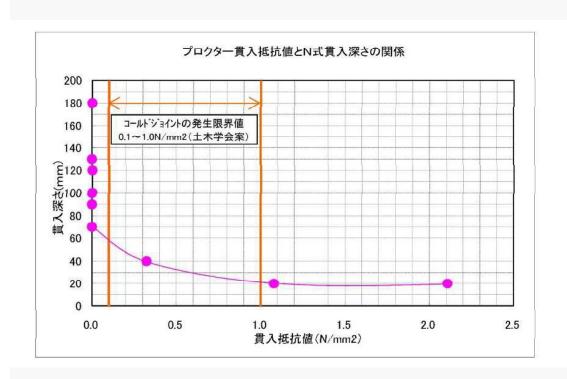


プロクター貫入試験

【プロクター貫入試験】


本来、モルタルの凝結時間を測定する試験。練り上がりから30分ごとにプロクター貫入試験を実施し、貫入抵抗値を測定。 土木学会では、0.1~1.0N/mm2の値でコールドジョイントが発生しやすいとしている。 コンクリートから粗骨材を取り除いたモルタルを試料として実施するため、試験室では可能だが現場の管理としては不向き。

上記の試験では、3時間20分経過付近で 0.1N/mm2に達していると考えられる。

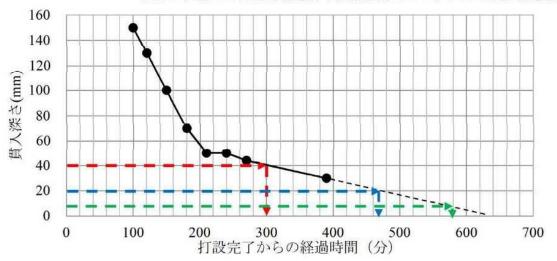

N式貫入試験

【N式貫入試験】

簡易的にコンクリートの強張りの程度を把握する試験方法。生コンの現場試験等で使用する突き棒(ϕ 15mm、L=50cm)を、高さ75cmから自由落下させ、コンクリートに突き刺さった深さを測定する。プロクター貫入試験と同じタイミングで実施。

使用器具も手に入りやすく、コンクリートを試料と した試験であるので、現場管理に向いている。

【N式貫入試験による管理値の決定】


プロクター貫入抵抗値とN式貫入深さの関係から、土木学会案のコールドジョイントの発生限界値の下限である0.1N/mm2のときの貫入深さは55mm付近となる。

この結果をふまえて現場での管理は、例えば『安全を考慮し、N式貫入深さが80mmとなったら、直ちに打重ねの指示をする』というように管理する。

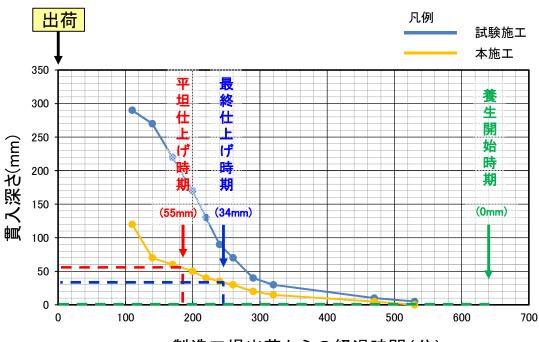
3-(2). N式貫入試験による仕上げ時間等の設定例①

試験施工でのN式貫入試験を用いた仕上げ時期推定例

平成27年3月4日外気、床版底枠下面給熱養生20℃下でのN式貫入試験結果

左官工の仕上げ時期とN式貫入試験値の相関結果(平成28年1月30日の試験施工結果より)

N=40mm	機械を用いた「平坦仕上げ」の時期	300分
N=20mm	金コテを用いた「最終仕上げ」の時期	470分
N=10mm以下	養生シート動設可能な「シート動設」の時期	580分


向定内橋施工記録との対比

	回定囚0.) 打設記	録から	N式負人試	顿箱果 7	からの推定時間
打設時間	7:30	-	14:30			
平坦仕上げ	11:30	-	20:00	12:30	-	19:30
金コテ仕上げ	14:00	_	21:00	15:20	-	22:20
シート敷設	22:00	-	2:30	17:10	_	0:10

^{*}N式貫入試験結果から仕上げ時期の計画目安には十分採用できる。

3-(3). N式貫入試験による仕上げ時間等の設定例①

N式貫入試験を用いた仕上げ時期推定例

製造工場出荷からの経過時間(分)

実際の作業内容と経過時間

大MVIPALITE	r,					
		試験施工			本施工	
作業内容	(天候:曇り	り 外気温:2	2~25°C)	(天候:晴∤	ル 外気温:2	23~29°C)
	時間	経過時間	貫入量	時間	経過時間	貫入量
平坦仕上げ(トロウェル)	13:05	280分	50mm	10:30	185分	55mm
金ゴテ仕上げ(1回目)	13:15	290分	40mm	10:45	200分	50mm
最終仕上げ(金ゴテ2回目)	14:15	350分	26mm	11:30	245分	34mm
養生マット敷設	16:35	490分	8mm	18:05	640分	0mm

考 察

試験施工時は、「平坦仕上げ」の時期が280分経過後であったが、本施工では185分経過後となり約100分早くなっている。また、「最終仕上げ」の時期は、試験施工では350分経過後で本施工では245分経過後と、こちらも約100分仕上げの時期が早くなっている。

これは、試験施工時の天候が曇りで最高気温が25℃であったのに対し、本施工では晴れて日差しが強く最高気温も29℃となったため、コンクリートの凝結速度が速くなったためである。本施工では、試験施工時より貫入量が10mm程度大きい段階で仕上げ作業を行っているのも、凝結速度が速いため仕上げ作業が遅れて均せなくなることを防ぐためである。

仕上げ時期の判断は外気温や日差し・風の影響によって変わるが、今回のN式貫入試験の 結果から、天候により仕上げ時期が変わったとしても時間比例することが分かった。

試験施工のN式貫入試験結果を整理(表・グラフ)した上で、本施工時も測定することにより、天候の影響による仕上げ時期の変化にも対応することができる。

よって、試験施工でN式貫入試験を行い仕上げ時期の計画目安を立てることは非常に大事であると言える。

3-(4)、床版防水プライマーの建研式引張接着試験の方法

【P24.被膜養生材の選定について】

この手引きでは、床版上面は1か月間の養生を行う事が基本となっており、仕上げ補助剤の選定が適切でないことにより、防水層で使用する接着剤との相性が悪く、所定の接着強度を満足できない事象が生じてしまっている。

そのような状況下において、最近では防水層施工前に引張接着試験を実施して床版面の仕上がり評価を行い、所定の接着強度が得られない場合は、床版面をポリッシャやコンクリート用パワーブラシ等で削るもしくは磨く等の処理を行っている。

その際に行われる引張接着試験は、3箇所程度実施することとし、評価試験については、部分的に防水層に用いるプライマーを塗布し、プライマー層上面において建研式による引張接着試験を行い1.2N/mm2以上の付着力を有することを確認するものである。なお、試験は1.2N/mm2以上の引張強度が確認された時点で途中終了しても構わない。また、1.2N/mm2に至る前にコンクリートがレイタンス層などで破壊するようであれば、されらの脆弱層を適切に除去することとしている。

引張接着試験の合否判定に使用されている値(1.2N/mm2)は、道路橋床版防水便覧(平成19年3月)日本道路協会の「表-4.2.2 基本照査試験の目的及び合否判定の目安」を準用している。

試験項目	試験目的	試験 温度	合否判定の目安
引張接着試験	床版防水層と床版及び舗装との界面 における引張接着性を照査する。	23℃	強度0.6N/mm2以上
		-10℃	強度-1.2N/mm2以上

この手引きでは、床版コンクリートの複合劣化を防ぐために、フライアッシュを添加してコンクリートの緻密化を図り、さらに養生期間を3か月間とすることにより、床版表面をより緻密化にすることを目標としているため、床版コンクリート表面を削る、磨く等の処理は最も避けたい事項の一つである。

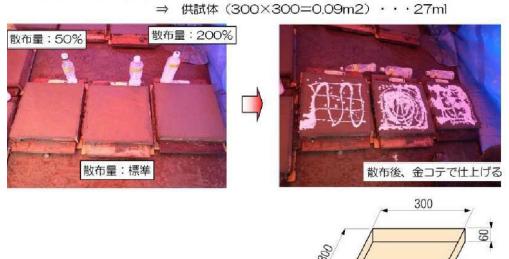
一般的な対応策としては、被膜養生材を使用しないで床版コンクリートを施工する方法が考えられるが、床版は面積が広く部材厚が薄い構造であるため、コンクリート打設後の水分逸散を防止するために被膜養生が重要であること、フライアッシュを添加したコンクリートが紛体量が多いことにより粘性が高いことなどから、品質を確保するためには被膜養生材無しての施工は非常に困難であると考えられる。

そこで、本手引きでは、床版コンクリート施工前(試験施工時)に防水層施工前に実施される引張接着試験を実施して、コンクリート打設時に使用する被膜養生剤と防水層で使用される接着剤の強度確認を行う事とする。

引張接着試験にて所定以上の強度(1.2N/mm2)以上を確保できる被膜養生剤を選定して床版コンクリートの施工に使用することとする。

なお、防水層の種類によって使用する接着剤が変わるため、その両方について引 張接着試験を実施することが望ましい。

シート防水:アスファルト系の接着剤高機能防水:エポキシ樹脂系の接着剤

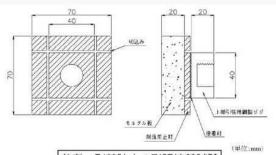

既存の試験結果では、高機能防水については一般的に使用されている被膜養生剤を使用しても、所定以上の引張接着強度を有している結果となっているため、本手引きをもとに施工された床版コンクリートについては、高機能防水を使用することが望ましい。

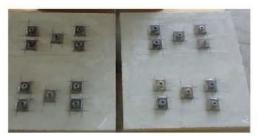
試験施工時に行う引張接着試験方法については、建研式を標準とする。 建研式の引張接着試験方法を以下に記載する。

① 供試体作成

供試体は、実際に使用するコンクリートの配合で製作を行う。 供試体寸法は、「道路橋床版防水便覧」に準じて300×300×60とする。 供試体の表面仕上げは、実際に使う被膜養生剤を使用することとし、散布量 も接着強度に大きく影響することが考えられるため、十分な管理を行う事が 必要である。

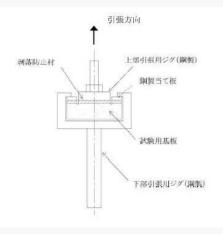
例) (標準散布量:300ml/m2)




② 接着剤塗布

供試体に防水層施工時に使用する接着剤を塗布し、検査治具を取付ける。 その際に、コンクリート表面に異物、汚れ、セメントの粉等があれば、 水洗い等でそれを除去する。

③ カッター目を入れる 試験体に接着した検査治具の周り40×40cmの方形の4辺にカッター 目を入れる。



参考: 剥落防止の引張接着試験

④ 引張試験

検査治具を引張試験機で引張る。 その時の最大荷重T(kN)を求める。

⑤ 引張接着強度 引張接着強度は、次式により求める。

引張接着強度 = 最大引張荷重 / 1600 (mm2)

⑥ 評価

引張接着強度が、所定の強度(1.2N/mm2)であれば合格とする。

2-6-5 施工

- (1) 下地処理 (新設)
 - 1) 床版及び地覆面の変状は、防水層の性能に大きく影響を与えることから、防水層を施工する床版・地覆面は 変状の無い健全な状態でなければならない。
 - 2) 床版防水を設置するコンクリート床版面は、床版防水の性能に影響を与えないよう措置する必要がある。
- (2) 防水層

防水層の施工に際しては、あらかじめ定められた施工要領書の各項に従って施工するものとする。

- (3) 結設
 - 1) 舗設に際しては、設計要領第一集舗装編の各項にしたがって行うものとする。
 - 2) 舗設前には防水層の表面に滞水、付着物などが無いことを確認するものとする。
- (1)1) 防水層を施工する床版部や端部の、豆板、ひび割れなどの変状部分は、防水層の接着性に影響を及ぼすだけでなく、防水層そのものの耐久性を低下させることから、床版・地覆の防水層の設置部分については変状の無い健全な状態を確保することとした。このことから、床版・地覆の工事完丁時においてはジャンカ等、変状の無いことを確認するものとし、変状が確認された場合は適切に補修する必要がある。また、防水層の施工時に床版及び地覆部分に変状箇所が確認された場合については、速やかに監督員に報告し指示を受けるものとする。新設橋の床版面の仕上げ処理についてはコテ仕上げを標準としているが、過去に施工された床版ではほうき目仕上げとなっている場合もある。ほうき目仕上げの場合は、凹部では空気溜りや塵埃が原因となって、防水層の膨れやはがれ等の損傷が生じ、凸部では適切な防水層厚が確保できなくなる可能性もあることから防水層の性能低下を招く恐れがあるので、それらに留意し施工する必要がある。
- (1)2) 床版・地覆面のレイタンス、塵埃、油脂、付着を阻害する膜養生剤等が付着していると防水層の接着性に影響を及ぼすことがあるため、これらの有害物については防水層の施工に先立ち清掃・除去する必要がある。なお、清掃方法はポリッシャやコンクリート用パワーブラシなどによる表面清掃や、コンプレッサー、ブロアーなどによる清掃が一般的である。しかしながら、床版の表面状態は周辺環境や存置期間などによって異なることから、部分的な試験施工などを行い現地に応じた清掃方法や程度を定めることも有効である。

また、膜養生剤の塗布されている床版面や、樹脂系モルタルによる補修部分(グラウトホースのあと処理部、セパレータのあと処理部等を含む)については、膜養生剤・補修材及び防水層の種類によっては接着性能が低下する場合があるため、施工に先立ち膜養生剤・補修材と防水材料との接着性などを確認しておく必要がある。なお、影響が懸念される場合には、確実に除去する必要がある。

床版面の仕上がり状態の評価については、引張接着試験を行い確認するものとし、床版面の状態に応じて 3 箇所程度実施するとよい。評価試験については、部分的に防水層に用いるプライマーを塗布し、プライマー層上面において建研式による引張接着試験を行い $1.2\,\mathrm{N/mm^2}$ 以上の付着力を有することを確認するとよい。なお、試験は $1.2\,\mathrm{N/mm^2}$ 以上の引張応力が確認された時点で途中終了しても構わない。また、 $1.2\,\mathrm{N/mm^2}$ に至る前にコンクリートがレイタンス層などで破壊するようであれば、それらの脆弱層を適切に除去する必要がある。これら脆弱層が確認された場合においては速やかに監督員に報告し指示を受けるものとする。床版防水の施工に際しては、施工前に床版の水分量を測定し、施工要領書に記載された規格値を満足していることを確認するとともに、床版面の表面が濡れていないこと(乾燥していること)を確認する必要がある。

【NEXCO構造物施工管理要領より抜粋】

3-(5). 模擬床版試験施工計画の事例①(鋼単純鈑桁橋)

(1) 目的と方針

- ・試験施工は、施工計画書の立案に不可欠な項目を施工前に確認するために実施する。そのため、本施工の時期に合わせて実施する必要がある。
 - 締固め時間による空気量の保持性とその質を気泡間隔係数により評価し最適な締固め時間を確認し実施工に反映させる。試験供試体は実施工の対象部材をモデル化して行う。
- ・強度については、締固めをしたものをコア抜きし確認する。この場合、7日、14日強度の確認 で28日強度を想定するものとする。
- ・スケーリング試験は、最終確認のために試験施工で供試体を作製し、施工位置付近の同じ環境下で養生したもので試験し、耐凍害性を確認する。
- ・ひび割れの検討を別途実施し、対応策を実施工に反映させる。
- ・実機練りや試験施工の結果を反映し、配合の微調整や混和剤の変更をする場合、実機試験 練りを行い、室内試験練りは省略する。

(2) 試験施工のコンクリート配合

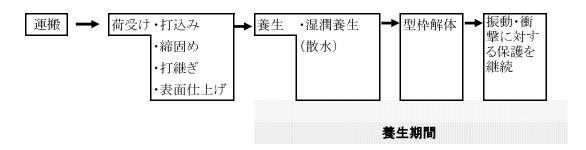
・実機試験練りの結果を踏まえて、補正の必要がなければ同じ配合で試験施工を行う。

								${\rm kg/m}^3$
配合	セメント	水		細骨材	粗骨材	涯	昆和剤	膨張材
高炉セメント B種	405	170		614	1151		4.25	20
水結合材 W/B(%	40	·/ ₀		细骨材率 S/A(%)	37.7%			

(3) 模擬試験体製作図

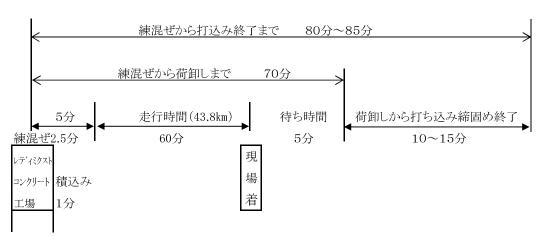
鉄筋 下面 橋軸方向 D16,@250

断面図



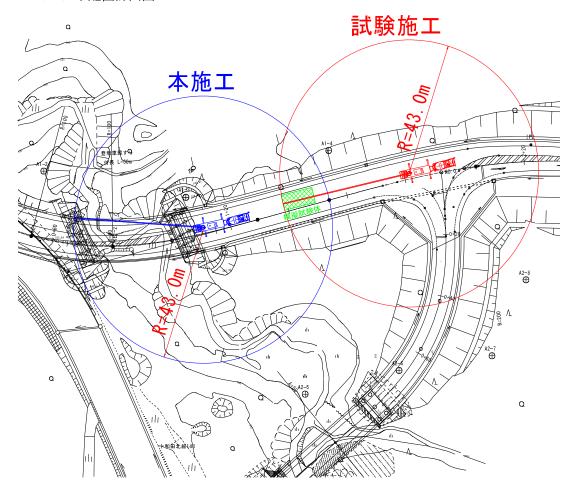
鉄筋 下面 橋軸直角方向 D19,@250

72


(4) 試験施工方法

(4)-1. 作業工程計画

(4)-2. コンクリートの運搬・受入れ計画



練混ぜから荷卸しまで	練混ぜから打ち込み糸	冬了まで	摘 要
1.5時間以内	外気温が25℃を超えるとき	1.5時間以內	0
1.0世刊即及四	外気温が25℃以下のとき	2.0時間以内	_

(4)-3. 現場內運搬計画

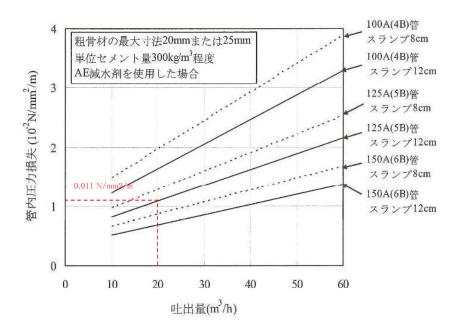
 現場内運搬はコンクリートポンプ車にて行う。そのため、本施工と同じ水平換算距離の 配管を行い圧送する。

ポンプ車配置計画図

(4)-4. 配管計画

コンクリートポンプ車のブームを使用

水平換算長さ(土木学会コンクリートのポンプ施工指針)より


項目	単位	呼び寸法	水平換算長さ(m)*
		100A (4B)	3
上向き垂直管	lm当たり	125A (5B)	4
		150A (6B)	5
	1m当たり	$175A \rightarrow 150A$	
テーパ管**		$150A \rightarrow 125A$	3
		$125A \rightarrow 100A$	
フレキシブルホース		5~8mのもの1本	20

^{*} 普通コンクリートの圧送における値

^{**} テーパ管は長さ1mを標準とする値であり、この水平換算長さは小さいほうの径に対応する値である

コンクリートポンプ車の配管計画

	項目	本数·m	単位	呼び寸法	水平換算値 (m)	水平換算 長さ(m)
	ベント管	2	1本当たり	90° (7B)	6	12
	テーパ管(1.0m)	1	1本当たり	175A→150A	3	3
デ	ベント管	1	1本当たり	90° (6B)	6	6
ッキ	テーパ管(2.0m)	2	1本当たり	150A→125A	3	6
部	水平直管(1.676m)	2	1m当たり	125A	1	2
	水平直管(3.0m)	3	1m当たり	125A	1	3
	ベント管	1	1本当たり	90° (5B)	6	6
	上向き直管(1.0m)	1	1本当たり	125A	4	4
ブ	ブーム配管(35m)	35	1m当たり	125A	1	35
ĺ	ベント管	14	1本当たり	90° (5B)	6	84
ム 部	中間ホース(硬質ゴム)	3	1~4m	り 125A 1 3 り 90° (5B) 6 6 り 125A 4 4 り 125A 1 35 り 90° (5B) 6 84 -4mもの1本 10 10	10	
티	フレキシブルホース	7	5∼8m³	もの1本	20	20
		合計	水平換算長さ	(m)		191

普通コンクリートの圧送における管内圧力損失の標準値(土木学会コンクリートのポンプ施工指針)より

(4)-5. 圧送条件

- ・ 暫定配合:24-12-25BB W/B=45%(膨張材あり)
- ・ ポンプ圧送が可能かどうか、水平換算距離による方法により水平管1m当たりの管内圧力 損失 0.011を乗じてコンクリートポンプにかかる最大圧送負荷を算出する。 その値の、1.25倍を上回る吐出圧力のコンクリートポンプ車を選定する。

圧送負荷の算定方法

$P=K(L+3B+2T+2F)+WH\times 10^{-3}$

P:コンクリートポンプに加わる圧送負荷(N/mm²)

K:水平管の管内圧力損失(N/mm²/m)

L:直管の長さ(m)

B:ベント管の長さ(m)

T:テーパ管の長さ(m)

F:フレキシブルホースの長さ(m)

W:フレッシュコンクリートの単位容積重量(KN/m³)

H:圧送高さ(m)

〔注〕 (1) ベント管の長さは、実長とする

(2) テーパ管では、径の小さいほうの管とみなす

 $P=0.011\times(44+3\times18+2\times3+2\times10)+24.0\times1\times10^{-3}=1.39\text{N/mm}^2(1.39\text{Mpa})$

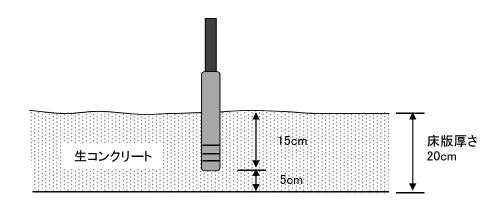
コンクリートポンプ車の能力算定 P=1.39×1.25=1.74N/mm²(1.74Mpa)

使用するコンクリートポンプ車の仕様

■ 仕様諸元

	型式		BSF38-5.16HZ
	理論最大吐出量	世世皇 160m²/h 2世世 8.5Mpa 12ダー陸 4230mm 7長 2100mm 7長 2100mm 2 175A 2 100mm 7	160m³/h
=	理論最大的出意 理論最大的出意 理論最大的出意 理論最大的出意 コングリートシリンダー径 ストローク長 コングリートシリンダー数 社出口口径 ボッパー 水ボンブ ブーム型式 最大垂直リーチ 最大木平リーチ 設定の要素さ 旋回角度 操作方法 コングリート輸送管径 先端ドッキングホース アウトリガー 前 後	8.5Mpa	
	コンクリートシリンダ・	一怪	ф 230mm
ij	ストローク長		2100mm
1	コンクリートシリンダ・	一級	2
1000	社出口口径		175A
ルンブ	ホッパー		容量 0.6m ³ 高さ 約1290mm グリル開展時ポンプ停止安全装置装備
	水ボンブ		ホッパ洗浄用搭載(25bar, 160L/min)
	ブーム型式		全油圧5段屈折RZ式
	最大垂直リーチ	大吐出量 160m²/h 150m²/h 150m²/h 150m²/h 230mm 175A 2100mm 2 175A 2100mm 2 175A 250mm 2 175A 250mm 2 175A 250mm 2 175A 250mm 2 2 2 2 2 2 2 2 2	37.5m
	最大水平リーチ		32.8m
	ホッパー グリル関原時本: 水ポンプ ホッパ洗浄用語 ブーム型式 全油圧! 最大垂直リーチ 最大水車リーチ 最大下方リーチ 設置必要高さ 旋回角度 操作方法	25.3m	
		7.4m	
7	旋回角度		365*
1	操作方法	ロ径 175A 容量 0.6m ² 高さ グリル開展時ポンプ停止 ボッパ洗浄用路観(25t を油圧 5段回計 リーチ 37.5m 32.8m リーチ 32.8m リーチ 25.3m りローチ 35.5m りは 手動・無線 地送管径 125A 1.5 油圧式6.3 後 油圧式7.3 前 4.3m 後 5.9m	手動・無線・有線
4	コンクリート輸送質	径	125A
	先端ドッキングホー	-2	125A 1.5m
	~~~	m	油压式6.3m
	アクトリカー	後	油圧式7.3m
	oss	煎	4.3m
	(片側サポート)	檢	5.9m
	架装シャーシ	2	総重量25tシャーシ
7	車両全長		11380mm
トラックシャーシ	車両全幅		2490mm
1	車両全高		3780mm
2	車両装重量		\$524.8t

コンクリートポンプ車の能力判定


圧送負荷 1.74Mpa

コンクリートポンプ車の能力 8.5Mpa

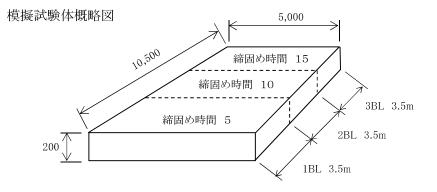
能力判定 1.74Mpa≦8.5Mpa · · · OK

#### (4)-6. コンクリート打込み計画

- ・ コンクリートポンプ車による圧送に先立ち、先送りモルタルを通す。通したモルタルは、 トラックアジテータに戻してから生コンを打込む。
- コンクリートの締固めには、内部振動機を用いる。
- ・ コンクリートは、打ち込み後速やかに十分締め固め、コンクリートが鉄筋の周囲および 型枠のすみずみまで行き渡るようにする。
- ・ せき板に接するコンクリートは、できるだけ平坦な表面が得られるように打ち込み、締 固める。
- ・ 模擬体の厚さが20cmのため、内部振動機は先端から15cmを挿入して締固める。 なお、内部振動機の先端から15cmの位置にマーキングを行い挿入目印とする。
- ・ 内部振動機は鉛直に挿入し、その間隔は振動が有効と認められる範囲(振動機径の 10倍)とし、挿入間隔は50cm以下とする。



#### • 目視確認行為:


コンクリートとせき板との接触面にセメントペーストの線が現れる。

コンクリートの容積が減っていくのが認められなくなり、表面に光沢が現れてコンクリート 全体が均一に溶けあったように見える。

#### 使用内部振動機

型式	棒径	使用数	出力	電圧	電流	周波数	振動数
HBM40ZX <b>-</b> R	40mm	2本	250W	48V	5.5A	200Hz	200Hz
HBM50ZX-R	50mm	2本	400W	40 V	9A	20011Z	2001 IZ

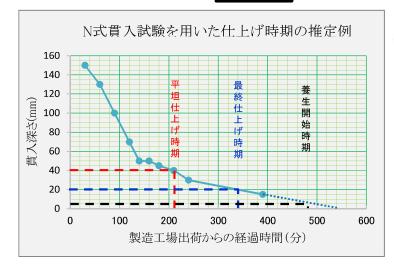
- ・ 打込みに当たっては、締固め時間と空気量の関係や締固め時間毎(5秒、10秒、15秒)の 気泡間隔係数を調べるため、模擬体を3分割(1ブロック当たり3.5m)して締固め時間5秒 の区間と10秒、15秒の区間に分けて打込みを行う。
- ・ 内部振動機の引き抜きは、抜き穴が残らないよう徐々に行う。
- ・ 内部振動機は、コンクリートを横移動させる目的で使用しない。

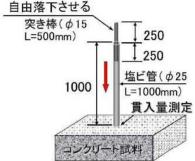


・ 左官仕上げのタイミングを判断するため、生コン練上げ完了時点から経過時間を計測しN式 貫入試験を実施する。計測する時間は、30・60・90・120・140・160・180・210・240・390分後 の間隔で測定を行う。

既往の試験実績を参考に、平坦仕上げを行う目安の貫入量は40mmとし、最終金ゴテ仕上げ を行う目安は20mmとする。なお、養生マット敷設開始時期の目安は5mmとする。

但し、貫入量の値は目安であり実際は左官工の感覚を重視して仕上げを行う。試験データの 整理に当たっては、実際に左官工が仕上げに入ったタイミング(経過時間)を記録し、N式貫 入試験のグラフにそれを落とし込み、本施工での仕上げ時期の予測を付ける。


- ・ 最初の荒仕上げは、羽子板、木ゴテにて粗骨材をコンクリート表面より押し込むように仕上 げる。その後、平坦仕上げはトロウェルにて全体を平滑に仕上げる。
- ・ 金ゴテをかける適切な時期の目安としては、指で押してもへこみにくい程度(貫入量20mm) に固まったとき、こてを強く押しつけながらセメントペーストを押し込み密実な面に仕上げる。
- ・ 平坦仕上げ時は作業性改善や、表面からの水分蒸発による初期乾燥ひび割れの抑制お よび上層との付着性向上を図るために表面仕上げ補助・養生剤




被膜養生剤散布状況



トロウェルによる仕上げ状況





N式貫入試験装置 概略図

#### (4)-7. コンクリート養生計画

・ 打込みを終了したコンクリート表面は、直射日光や風にさらされると急激な乾燥によりひび 割れが生じやすくなる。そのため、打込みを終了したコンクリートは露出面が乾燥しないよ う速やかに養生する。

養生シートは、微細な溝を施した軽量な半透明シートでコンクリート表面に敷設するだけで、毛細管現象により水を搬送し均一に拡散・保持できる「水搬送シート」を使用する。



水搬送シート敷設状況

- ・ 施工に当たっては、モバイル式温度計を使用しコンクリート温度履歴とその周りの雰囲気 温度を計測し本施工の養生管理に反映させる。
- ・ コンクリート部材内外の温度差が大きくならないよう、また、部材全体の温度降下速度が大きくならないようコンクリート温度をできるだけ緩やかに外気温に近づける



モバイル式温度計によるコンクリート温度管理

(5) 試験施工人員配置図

(6) 試験内容と確認事項

確認事項(○番号はフロー図より) 室内配合試験で選定された配合により試験を行う

⑩製造後の運搬、待機、圧送後のスランプ変化, ⑪製造後の運搬、待機、圧送、締固め後の空気量変化

セバト種類	水結合材比		スランプ cm			空気量	% 星	
	W/B %	出荷時	現着時	筒先	出看時	現着時	筒先	締固め後
高炉セメントB種	40%							

⑫締固め時間と空気量

	振動15秒	
空気量 %	振動10秒	
	振動5秒	

③締固め時間と気泡間隔係数

	_	
<i>μ</i> m	振動15秒	
気泡間隔係数 /	修01傾到	
気	振動5秒	

④締固め時間とコア供試体強度

N/mm ²	框動15秒	
4週圧縮強度試験 ]	振動10秒	
4週圧	振動5秒	

(3)N式貫入試験

	390分	
貫入深さ mm	240分	
	210分	
	180分	
	160分	
	140分	
	120分	
	90分	
	长09	
	30分	

#### 5-(6). 模擬床版試験施工計画の事例②(鋼4径間連続箱桁橋)

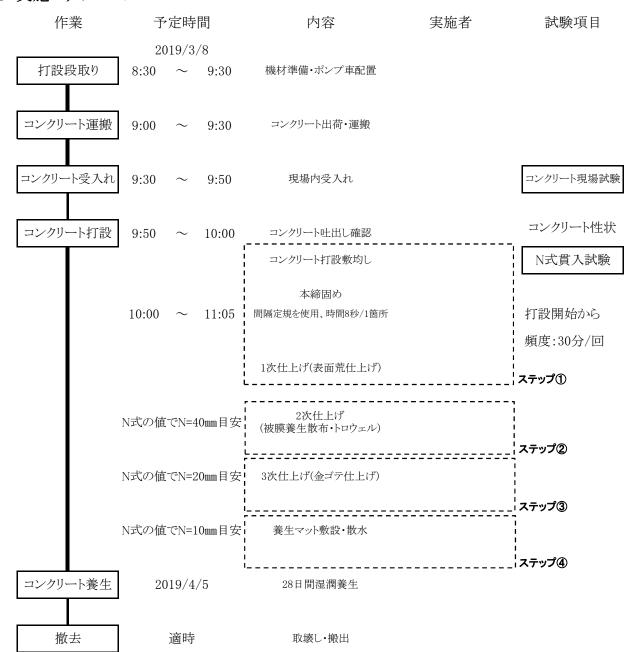
- 1目的
  - ・桑折高架橋床版の高耐久化の取り組みの一環として模擬床版を用いて 施工確認を行い、本施工時の施工計画の留意点を検討し反映させる。 また、本施工と同じ人員で行うことで本施工に向けた練習の意味もある。
- 2 実施日時
  - ·平成31年3月8日(金) 9:30~
- 3 実施場所
  - ·桑折高架橋P16橋脚西側(桁下)···次頁位置図参照
- 4 使用材料
  - ・鉄筋(組立て済み) SD345 D13~D19
  - 生コンクリート

33-12-20BB 膨張材入り 水セメント比45%以下

#### 配合の設計条件

工種	区分	呼び強度 (N/mm2)	粗骨材 最大寸法 (mm)	スランプ (cm)	W/C (%)	空気量 (%)	摘要
床版工	特殊品	33	20	12	45%以下	5	高炉セメント(B種) (膨張材入り)

- ・モルタル 1:3 (ポンプ車通し)
- •被膜養生材


(過去の試験により防水層との接着性が確認済みのものを選定)

・養生マット

### 5 使用機械

- ・コンクリートポンプ車 (36mブーム):1台
- ・棒状バイブレーター (φ50):3台(他に予備1台)
- ・トロウェル:1台
- •高圧洗浄機:1台
- 6 確認事項
  - ・コンクリートの性状(スランプ・空気量)の変化 (受入れ時、ポンプ吐出し時)
  - ・コンクリートの施工性(圧送、均し、締固め、仕上げ)
  - ・配置人員と設備の適否
  - ・間隔定規を使っての締固め方法の適否
  - ・左官仕上げの始まり時期と仕上げ可能時期(N式貫入試験と左官担当者の所見)
  - ・養生マットの敷設可能時期
  - ・養生マットの適用性(しっかり湿潤養生できるか)

## 2 実施スケジュール



## 3 実施体制

## 人員配置計画

総括責任者

•施工管理者 ○○○○

·写真記録担当者 〇〇〇〇

・締固め確認者 ○○○○

・生コン試験者

スランプ・空気量試験 生コン製造業者試験室

塩化物・単位水量測定

N式貫入試験·吐出確認○○○○、○○○○

· 土木一般世話役 0000

・敷均し担当者 2人選定

・締固め担当者 3人選定

•定規担当者 1人選定

・ポンプ車OP 1人

•左官担当者 2人選定

•雑工(型枠確認他) 1人選定

合計 17人+製造業者

## 4 実施計画

## 4-1) コンクリート試験実施項目

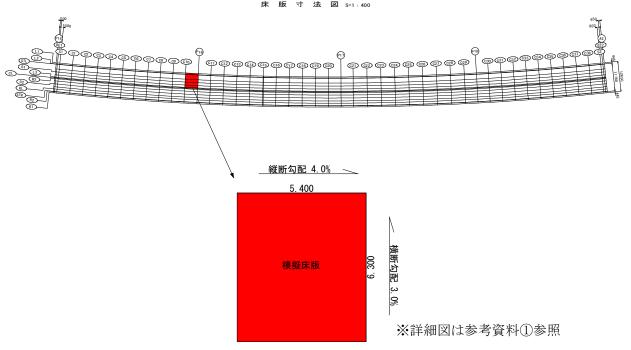
### コンクリート性状試験

項目	時期	備考
スランプ試験	製造時と現場受入れ時とポンプ筒先排出時	製造時・受入れ時・筒先時の変化確認
空気量測定	製造時と現場受入れ時とポンプ筒先排出時	製造時・受入れ時・筒先時の変化確認
塩化物総量測定	現場受入れ時	
単位水量測定	現場受入れ時	
供試体採取	現場受入れ時 6本 筒先9本	受入れ時と筒先時の変化確認

供試体の内訳は1週強度用3本、4週強度用3本と筒先から採取した残り3本を一般養生9日用

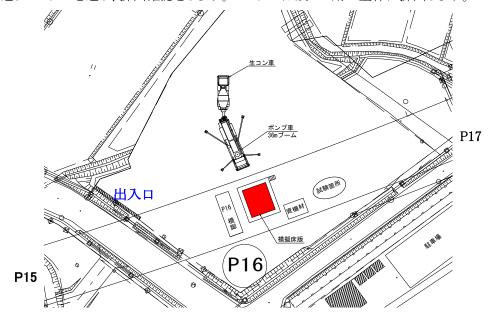
## 凝結状況確認試験

WC/III // CDUPEROUP	~.	
項目	時期	備考
N式貫入試験	打設開始から30分毎に1回	各施工段階の開始と 施工限界の目安確認


測定は30分に1回行うほかに左官工が開始した時点の貫入量も参考の為に測定する。

試験項目と時期を一覧表に示します。

区分	計解頂日	試験項目 試料採取時期		朝	考察	
色刀	时间火力 口	荷卸し時	圧送筒先時 (模擬床版上)	硬化後	<b>与</b> 宗	
	スランプ試験	$\bigcirc$	$\bigcirc$	1		
	空気量測定	$\bigcirc$	$\bigcirc$	1		
施工時	塩化物総量測定	$\bigcirc$	_	_		
	単位水量測定	$\bigcirc$	_	-		
	N式貫入試験	-	$\bigcirc$	-		
施工後	圧縮強度試験	O 6	O 9	-	σ7,σ28及び一般養生9日後	


#### 模擬床版の想定

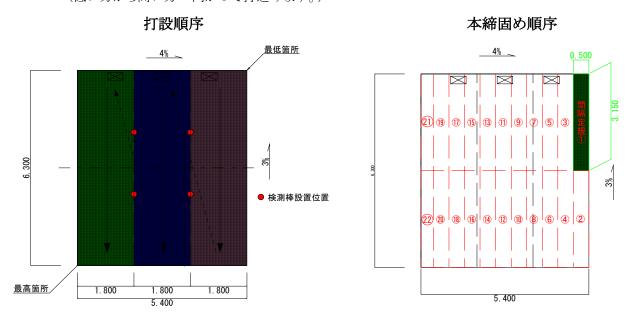
実床版の片車線の1ブロックの寸法で縦断・横断勾配を再現。 施工区間は全区間において縦断勾配4%、横断勾配3%となっており条件は同じです。



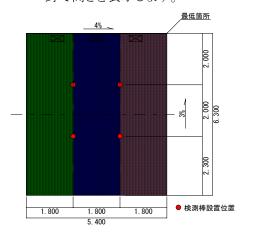

## コンクリート模擬打設

- ・模擬試験は各施工段階の実施項目を確認しながら施工します。・・・チェックシート参考資料②参照 4-2-1)打設段取り
- ・模擬試験に先立ち、資機材(バイブレーター、養生マット等)の動作確認、数量確認をします。
- ・模擬床版内に異物がないか確認してから散水して湿潤状態にします。
- ・コンクリートポンプ車を下図の位置に配置します。
- ・先送りモルタルを通し、排出確認をします。モルタルは残コン用の型枠に排出します。



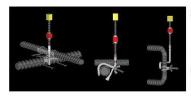

- 4-2-2)コンクリート運搬・受入れ
- ・指定した工場よりコンクリートを運搬します。
- ・生コン車が現場に到着したら伝票を確認して、受入れ時の試験を実施します。 ※スランプ・空気量・塩化物総量・単位水量・供試体採取・・・チェックシート参考資料③参照




## 4-2-3)コンクリート打設

・打設は計画手順(打設方向・締固め順序・時間)のとおりに行います。

(低い方から高い方へ向かって打込みます。)

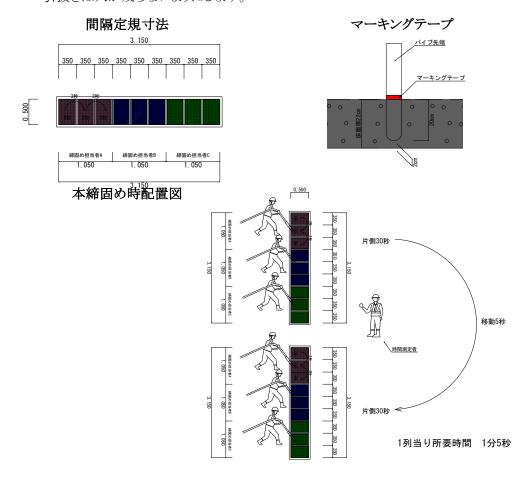



- ・打設箇所からN式貫入試験用のコンクリートを採取し、測定を行います。 N式貫入試験は30分に1度行い硬化の状況を確認します。・・・チェックシート参考資料④参照
- ・ポンプ車の筒先にバイブレーターを配置し、吐き出されたコンクリートをおおよその計画高に均します。
- 打込まれたコンクリートを左官工が検測棒を目安にトンボ等で計画高に均します。
- ・検測棒の設置間隔は横断方向に@2.0m,縦断方向に@1.8mとし周囲の型枠には 釘で高さを表示します。



#### N E T I S製品 **コン天棒** <u>N E T I S登録番号 KK-000005-V</u>

コンクリート床版打設時における天端標示棒

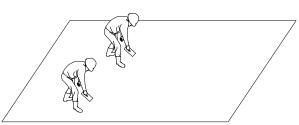



#### 製品の概要

橋梁の床版コンクリート打設時 に、天端の位置標示に必要な部材 (以下、標示棒とします)を製品化し たもの。

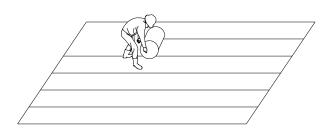
溶接を必要とせず、固定金具により簡単に設置できる構造なので、作 業性が向上します。

- ・打込み完了と共に、間隔定規を使い後追いバイブ(本締固め)を行います。
- ・締固め時間は時間計測者を配置し、1箇所8秒間(抜き差し2秒・振動6秒)とします。
- ・型枠に当てないため挿入の深さを確認できるようにバイブレーターの先端(20cm)に テープでマーキングし目安とします。
- ・引抜きは穴が残らないようにします。




- ・排水桝箇所は透明型枠で組立て、底面部・側面部にコンクリートが回る打設方法を確認します。 ※排水桝の詳細は次項に記載
- ・本締固めに追って、左官工が打ち込まれたコンクリートを木コテ・トンボ等で 計画高に調整しながら均します。(1次仕上げ)
- ・N式貫入試験の結果を確認後(N=40mm)、左官工の意見と合わせ養生材を散布し、 トロウェルと人力で均します。(2次仕上げ)
- ・被膜養生材は防水層との接着性が実証されているとします。別添参考資料
- ・N式貫入試験の結果を確認後(N=20mm)、左官工の意見と合わせ金ゴテで均します。(3次仕上げ)

# 2次仕上げ トロウェル・人力 (N式貫入試験 N=40mm目安)




## 3次仕上げ 人力 (N式貫入試験 N=20mm目安)



・N式貫入試験の結果を確認後(N=10mm以下)、コンクリート表面の状態を確認して 養生マットを敷設し散水して断熱性の高いブルーシート

散水・養生マット敷設 (N式貫入試験 N=10mm以下目安)



## 資材イメージ



#### 4-2-4)コンクリート養生

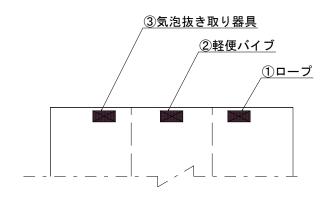
- ・模擬床版を28日間湿潤状態に保ちます。
- ・養生期間中は散水により水分を追加します。休日は当番を決め散水します。

#### 4-2-5)脱枠

- ・養生後、脱枠して側面・底面の表面の状態を確認します。
- ①表面の出来映え

(ジャンカ等は無いか。原因:締固めの不足・型枠の隙間・材料の分離)

打ち継ぎ箇所については筋が入っていないか


(原因:下層部と上層部の締固め不足・打ち重ね時間が遅い)

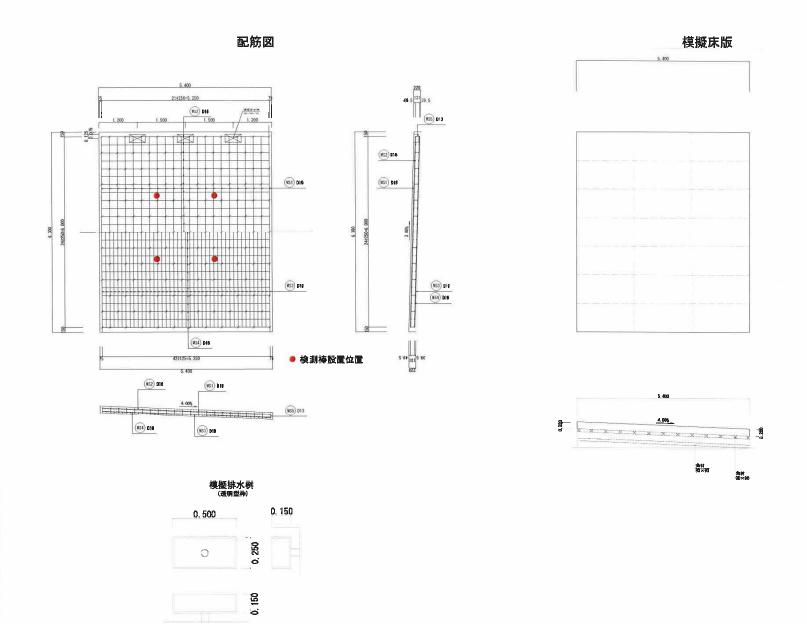
②ひびはないか

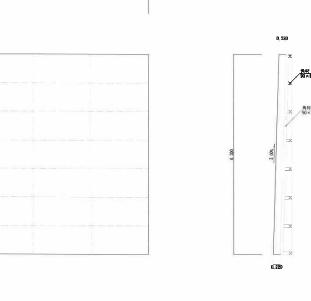
(ひび割れ調査表による項目を確認・・・チェックシート参考資料⑤参照

## 排水桝部詳細

- ・排水桝は透明の型枠で組み立て3個設置ます。
- ・3個の桝にそれぞれの締固め方法を試しコンクリートの回り具合を確認します。
- ①ロープを使った締固め
- ②軽便バイブを斜めに入れての締固め
- ③気泡抜き取り器具を使用しての締固め
- ※試験中は蓋をして見えないようにする。
- ※使用時間は6秒で統一する







## 5 参考資料

- ① 模擬床版構造図
- ② 施工確認シート(床版打設模擬試験施工段階確認表)
- ③ コンクリート現場試験記録表
- ④ N式貫入試験測定記録表
- ⑤ ひび割れ調査表

## 模擬床版構造図

## 参考資料①





## 参考資料②

床版打設模擬試験施工段階確認表

1	*1.76444 154 15	C1VC to 440/CV TO	111111111111	1
	作業工程	予定時間	実施時間	チェック
1	資機材の準備・確認	8:30~9:30	~	
2	ポンプ車の配置	8:30~9:30	~	
3	異物の有無・散水	8:30~9:30	~	
4	ポンプ車モルタル通し	9:45~9:50	~	
5	コンクリート吐出し確認	9:50~10:00		
6	コンクリート打設・筒先バイブ	10:15~10:45	~	
7	天端高さ調整均し(トンボ使用)	10:20~10:50	~	
8	後追いバイブ(本締固め)定規使用 8秒	10:45~11:00	~	
9	3個の桝締固め確認 3通り	10:45~11:00	~	
	①ビニールひも②軽便バイブ③気泡抜き取り器具			
10	木ゴテによる仕上げ (天端調整・コン天棒撤去4本)	11:00~11:20	~	
11	被膜養生材散布(150ml/m2)	N式貫入試験と 左官工の意見により		
12	トロウェル仕上げ(2次仕上げ)	N式貫入試験と 左官工の意見により	~	
13	金ゴテ仕上げ(3次仕上げ)	N式貫入試験と 左官工の意見により	~	
14	養生・散水	N式貫入試験と 左官工の意見により	~	

## コンクリート試験実施記録表

工事名	桑折高架橋半五郎地区床版工工事	
打設箇所	模擬床版	
打設日	平成31年3月8日	
設計配合	33-12-20BB 膨張材入り 水セメント比45.0%以下	
工場名	運搬距離	
打設数量	V=7.9m3	

確認項目	許容値	製造時	適否 (〇 ×)	受入れ時	適否 (○ ×)	筒先時	適否 (○ ×)
スランプ試験	±2.5cm						
空気量測定	$\pm 1.5\%$						
コンクリート温度						ı	
外 気温						_	
塩化物総量測定	0.3Kg/m3					-	
単位水量測定	±15Kg/m3					_	
供試体採取		_		6本		9本	

※空気量は5%の±1.5%で管理しますが4.0%以上を目標にします。

運搬距離表

(生))以此所改			
工場名	所在地	運搬距	雞(Km)
		L=	8.0
		L=	3.3
		L=	14.3
		L=	17.0
		L=	17.7

## N式貫入試験実施記録表

工事名	桑折高架橋半五郎地区床版工工事
打設箇所	模擬床版
打設日	平成31年3月8日
·	33-12-20BB 膨張材入り 水セメント比45 0%以下 高性能AF減水剤入り

	確認項目	予定時間	実施時間	気温	コンクリート 温度	結果(mm)
1	試料採取	10:00				
2	試験1回目	10:00				mm
3	試験2回目	10:30				mm
4	試験3回目	11:00				mm
5	試験4回目	11:30				mm
6	試験5回目	12:00				mm
7	試験6回目	12:30				mm
8	試験7回目	13:00				mm
9	試験8回目	13:30				mm
10	試験9回目	14:00				mm
11	試験10回目	14:30				mm
12	試験11回目	15:00				mm
13	試験12回目	15:30				mm
14	試験13回目	16:00				mm
15	試験14回目	16:30				mm
16	試験15回目	17:00				mm
17	試験16回目	17:30				mm
18	試験17回目	18:00				mm
	※左官工着手時も測定					
	2次仕上げ時開始時					mm
	3次仕上げ時開始時					mm

[※]貫入試験でN=40mmを確認後、実床版でも実施する。(試験穴の補修がこの時点では可能であるため)

## 参考資料⑤

# ひび割れ調査票

		調査者名
工事番号		工事名
請負業者名		
構造物形式		
構造物名		
位置		
構造物竣工年月日		
設計コンクリート種類		使用コンクリート種類
ひび割れの有無	有 無	本数: 1~2本 3~5本 多数
		ひび割れ総延長 約 3.5 m
ひび割れ発見日		最大ひび割れ幅(○で囲む)
		0.2mm以下 0.3mm以下 0.4mm以下 0.5mm以下
ひび割れ調査日		0.6㎜以下 0.8㎜以下 その他
		発生時期(○で囲む)
		数時間~1日 数日 数10日以上 不明
		規則性: 有無
		形 態: 網状 表層 貫通 表層or貫通
		方 向: 主筋鉄筋方向 直角方向 両方向
		鉄筋とは無関係
	構造物一般図ひて	ド割れ発生状況箇所のスケッチ図

## 高耐久床版施工時のチェックリスト(案)

工事名: 桑折高架橋半五郎地区床版工工事(環境条件A)

		<b>於針 宝饰</b> 陌日	必須or		チェック欄環境条件	
	検討、実施項目		任意	S	泉境条件 A	В
	1	必要な箇所にエポキシ樹脂塗装鉄筋を使用しているか	必須			
	2	連続桁の場合、打設ブロック、打設順序を踏まえたひび割れ対策を検討しているか	必須			
3 4 5		コンクリートの水結合材比は45%以下としているか	必須			
		配合はフライアッシュコンクリートか高炉セメントを使用しているか	必須			
	5	高炉セメント配合では自己収縮ひずみを計測しているか				
施	6	コンクリートに膨張材を添加しているか	必須			
工	7	膨張材を添加した配合での膨張・収縮ひずみを計測しているか				
前 8 コ		コンクリート配合にAE剤を使用し、必要な目標空気量としているか	必須			
	9	コンクリートに使用する骨材のASR試験(SSW法等)を実施しているか	必須			
	10	模擬試験体による施工性試験を実施しているか(養生期間28日)	必須			
	11	模擬試験体の膨張・収縮ひずみ、外気温、温度を計測しているか				
	12	模擬試験体打設時のプロテクター貫入試験、N式貫入試験を実施しているか	必須			
	13	模擬試験体を部分的に切断した供試体で塩分浸透試験を実施しているか				
	14	エポキシ樹脂塗装鉄筋の結束には被覆番線を使用しているか	必須			
	15	エポキシ樹脂塗装鉄筋の塗膜損傷防止対策を実施しているか	必須			
	16	エポキシ樹脂塗装鉄筋の塗膜損傷箇所のタッチアップをしているか	必須			
打	17	コンクリート内部に残置する金具(セパレーター等)に防錆処理をしているか	必須			
設前	18	施工の基本事項を尊守できる人員配置、施工方法となっているか	必須			
ייוּ	19	打重ね許容時間、仕上げ開始予定時間を踏まえた施工計画となっているか	必須			
	20	養生の方法、期間は適切な施工計画となっているか	必須			
	21	連続桁の場合、施工方法、膨張・収縮挙動を踏まえたひび割れ解析を行っているか	必須			
	22	実床版での膨張・収縮ひずみを計測するためのひずみ計を設置したか				
打	23	N式貫入試験を実施し、打重ね時間、仕上げ時間を確認しているか	必須			
	24	施工状況把握チェックシートで打設時の項目の確認をしているか	必須			
叶斗	25	左官仕上げは必要な時期(模擬試験体でのN式貫入試験値計測 時)に適切(計画人数以上、トロウェル使用時等)に行われているか	必須	_		
養生	26	養生は適切な方法(散水方法、特殊養生マットの使用、乾燥防止 対策等)で行われているか	必須			
打	27	必要な湿潤養生期間を確保したか(高炉1ヶ月、フライアッシュ3ヶ月)	必須			
設 後	28	実床版での膨張・収縮ひずみ、外気温、温度を計測しているか				

## 3-(7). 床版の施工計画の例

### 1. 打設概要

本計画書は、向定内橋の床版エコンクリート打設方法について示すものである。生コンクリートの受取検査方法、打設方法及び養生方法については、平成26年11月18日発議のフライアッシュを用いた生コンクリート配合の検討指示に従い実施した室内試験練及び実機練試験施工の結果を反映するものとする。

### (1) 打設箇所

向定内橋 床版工

#### (2) 打設日

打設予定日 平成27年3月20日(金)

打設予備日 平成 27 年 3 月 21 日、(土) 3 月 25 日 (水)

## (3) 使用コンクリートの種類

呼び強度 (N/mm²)	24
スランプ (cm)	12
骨材最大寸法 (mm)	25
セメントの種類	普通
混和材	フライアッシュ、膨張材

### (4)配合

	W/B	S/a (%)	単位量(kg/m³)									
			С	Ex	FA	W	細骨材		粗骨材		混和剤	
	(%)						S1	S2	S3	G1	G4	$(g/m^3)$
54.8	42. 4	43. 3	283	20	62. 5	155	456	111	185	303	707	3330

注) W/Bは、セメント、膨脹材とフライアッシュを結合材として算出した水結合材比である。

## (5) 使用材料一覧

材料種別	種類	採取地・製造業者	密度 (g/cm³)
セメント	普通セメント		3. 16
細骨材	S1 砕砂		2. 65
	S2 砂		2. 59
	S3 陸砂細目		2. 61
粗骨材	G1 砂利	0,000	2. 68
	G4 砕石		2. 70
混和材			3. 16
	フライアッシュ		2. 23
沙田 壬n 文d	AE 減水剤(標準形 I 種)		
混和剤			-
水	地下水		1.00

## (6) 生コンクリートプラント

0000

### (7) コンクリート数量

 $146.5 \,\mathrm{m}^3$ 

## (8) 打設方法

ポンプ工法 (コンクリートポンプ車)

## (9) 打設スケジュール

受け入れ試験 6:45

打設開始 7:00 打設速度 24m³/時間

打設完了 13:30 最終仕上げ 19:00 養生シート設置 20:00

湿潤・保温養生開始 21:00 (作業終了)

## 2. 使用機械

表2-1に使用機械一覧を示す。

表 2-1 使用機械一覧表

使用機械器具	規格	単位	数量	備考
バッチャープラント	二軸強制練ミキサ	式	1	
コンクリートポンプ車	DC-L1100BD-M33	台	1	ブーム長 33m
クレーン	25 t	台	1	
アジテータ車	4m3 積載	台	13	
高所作業車	9.9m	台	1	
ジェットヒーター	HS290-L	台	6	
内部振動機	φ50mm (先端ゴム付)	本	4	予備1本含
	φ 40mm(先端ゴム付)	本	2	予備1本含
	φ 20mm (先端ゴム付)	本	2	
内部振動コンバーター		台	2	
温度測定器	5 チャンネル計測	台	1	
	10m	本	1	
<b>和</b> 母母	20m	本	1	
熱電対	30m	本	1	
	50m	本	2	
生コンクリート受取試験器具	スランプ、空気量、温度、単 位水量、塩化物量測定	式	1	
金コテ		箇	6	
コンクリート仕上げ機械		台	2	
ジョウロ	仕上げ養生剤散布用	箇	2	
無線機	打設管理用	台	5	
拡声器		台	1	

## 3. 打設体制

## 3-1 打設管理体制

図3-1に打設時の管理体制図を示す。

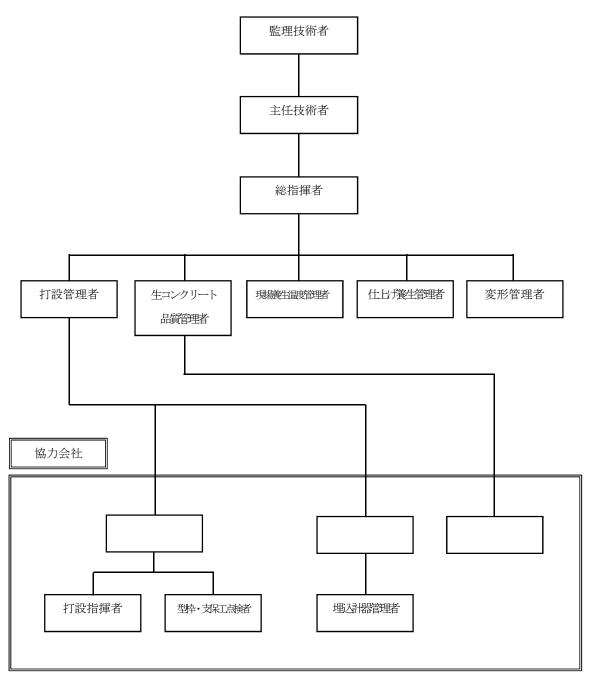



図3-1打設時の管理体制図

## 3-2 打設人員

表3-1に打設作業人員を示す。ただし、生コン受け入れ品質検査員は除く。

表 3-1 作業人員表

職種	人員	所属会社
作業指揮者	1	
ポンプ車オペレーター	2	
筒先バイブレーター	2	
後追いバイブレーター	1	
バイブレーター手元	5	
足場板段取り替え	9	
型枠点検者	1	
左官	6	
生コン車誘導員	1	
合計	17	

## 4. 打設詳細

4-1 コンクリート搬入経路

運搬距離及び運搬時間は以下のとおりである。

運搬距離:30.5Km運搬時間:48分

<アジテータ車のサイクルタイム>

練混ぜ  $(5\,\%)$  →運搬  $(50\,\%)$  →待機  $(5\,\%)$  →打込み  $(10\,\%)$  →洗浄  $(5\,\%)$  →帰路  $(50\,\%)$  =合計  $(50\,\%)$ 

<打設速度>

打設速度 24m3/時間、

<アジテータ車の積載容量>

 $4.0 \mathrm{m}^3$ 

<アジテータ車の必要台数>

時間当たりの必要台数 24/4=6台/時間

アジテータ車の必要台数 125(分)/60(分)×6(台/時間)=12.5(台)≒13(台)

### 4-2 打設方法

#### (1) 打設前の準備

- ・ 打設前に打設面の清掃を空気圧縮機により行い、ゴミや不純物等を除去する。
- · バイブレーター等の電動機器は、前日までに作動状況を確認しておく。
- 照明設備を準備設置する。
- ・ 受け入れ試験場所、ポンプ車の設置位置、アジテータ車のシュート洗い場、ポンプ車の残コン排出場所を図4-3と図4-4に示す。
- ・ 吊り足場全体の養生詳細は4-3に示し、前日から保温養生用のジェットヒーターにより養生温度を $10\sim13$  で調整する。
- ・ コンクリート打設前に打設作業員、ポンプオペレーター及び左官作業員をあつめ周知会を 実施する。

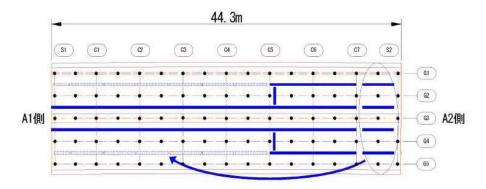





図4-4ボンプ車移動後のポンプ車位置図

#### (2) 打設作業

- ・ 直接ブーム打設できる 33mブームのポンプ車 (1 台) を用いて打設する。
- ・ アジテータ車からコンクリートを排出する前に高速攪伴を時計付の攪伴確認看板を見て 30 秒間行う。
- ・ 1.5 時間以内に確実に打ち重ね可能な 4m幅で連続打設する。
- ・ 筒先バイブレーターは先端ゴム付φ50 mm、後追いバイブレーターは先端ゴム付φ40 mmを 使用する。
- バイブレーター挿入間隔は50 cm、加振時間は8秒とする(気泡間隔係数の測定結果より、 5秒~10秒が有識者より推奨された)。
- ・ バイブレーターの挿入間隔は 50 cmを基本とする。1.5 時間以上経過した打重ね部は、間隔を 25 cmとするよう、打設管理者が指示する。
- バイブレーターの引抜は跡が残らぬようゆっくりと引き抜く。
- ・ 地覆・壁高欄差筋 (エポキシ鉄筋) に付着したモルタルは、打継処理剤散布時までに確実 にウエス等でふき取る。
- ・ 側枠部は、バイブレーターと合わせて、木槌で叩き表面の空気を排出する。
- ・ エポキシ鉄筋は滑りやすいので足場板(裏面に滑り止め桟木を打ちつける)を敷き並べて、 作業通路を確保する。作業通路の配置図を図4-5に示す。



打設完了後最後部へ移動

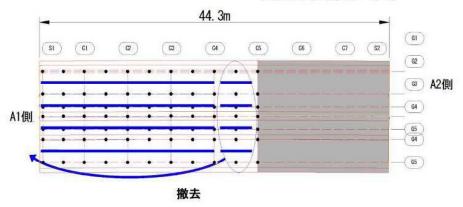



図4-5作業通路配置図

#### (3) 橋面高さ管理

- ・ コンクリートの天端管理には、鋼主桁上に図 4-6 に示す抜取り型の天端管理全ネジ棒を 図 4-7 に示すように 2.75 m ピッチに設置し、コンクリート面が所定の高さに打設された後に全ネジ棒を抜き取る。
- ・ 中央分離帯部のコンクリート天端管理は、図4-7に示すG3 桁上にエポキシ鉄筋を配置し、コンクリート打設後まで残置し、打設前後の高さ確認用の測定点とする。

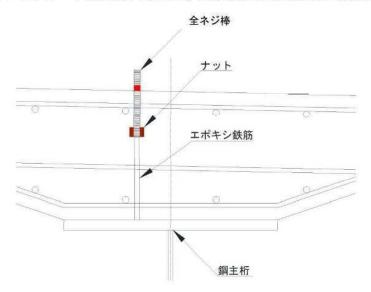



図4-6抜取り型の天端管理棒概念図

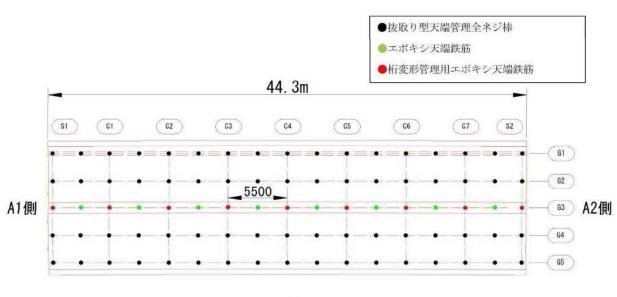



図4-7天端管理位置図

#### (4) 仕上げ方法

- ・ 筒先バイブレーターによる締固め後、レーキにより均しを行う。
- ・ 打設後 4 時間後から(試験施工では打設後  $4 \sim 5$  時間後) コンクリート仕上げ機械(プロペラ)による均しを行う。
- ・ 仕上げ補助剤 を 125ml 計量し、マーキングした 1m²の範囲に実際に 散布することで、作業員に必要散布量を実感させる。また、規定量を散布するために、仕上 げ補助剤をジョウロ 1 杯分の散布範囲を現地に明示しその範囲で使い切る。
- ・ コンクリート仕上げ機械での均し終了後、1回目の金コテ仕上げを行う。
- ・ 最終仕上げを約5.5 時間後 (試験施工で確認)、2回目の金コテ仕上げを行う。以下に仕上げ フローチャートを図4-8に示す。

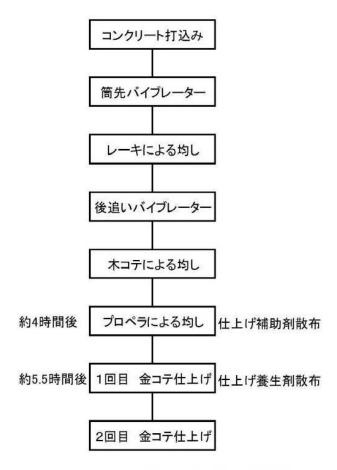



図4-8表面仕上げの作業フローチャート図

### 4-3 打設時保温養生方法

- ・ 床版下の吊り足場全体をシートで囲い、ジェットヒーターを使用して下面から底型枠を 10~13℃に保ち保温養生する。
- ・ ジェットヒーターの配置及び送風のビニルダクトの配置図を図4-9と図4-10に示す。
- ・ ジェットヒーターの選定に当たり実施した熱量計算を添付資料「コンクリート養生温度管理計画」に示す。

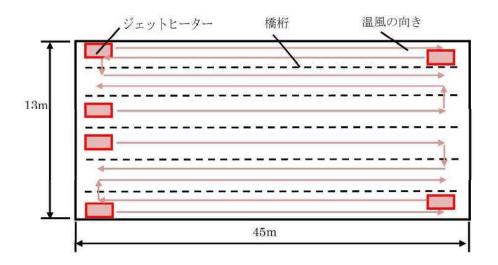



図4-9ジェットヒーター配置計画図 (平面図)

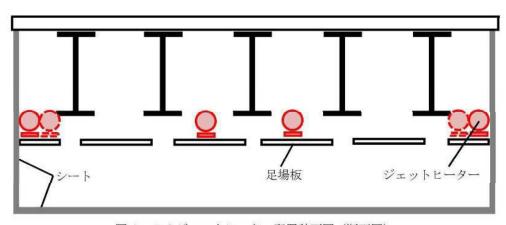



図4-10ジェットヒーター配置計画図 (断面図)

#### 4-4 打継目処理方法

- ・ 地覆壁高欄部、中央分離帯地覆部及び伸縮装置後打ち部は、仕上げ補助・養生剤を使用せずに金コテ仕上げを行い、橋軸方向に沿ってほうき目仕上げを行う。
- ・ ほうき目仕上げ後、打継処理剤 300ml/㎡を噴霧器により散布する。
- 規定量を確実に散布するために、噴霧器の容量に対する散布範囲を現場に明示する。

#### 4-5 養生方法

#### <床版表面の養生>

- ・ 表面仕上げ完了後、高圧洗浄機を用い霧状にコンクリート表面に散水する。
- ・ 保湿のために液体搬送フィルム を橋軸方向に敷きつめる。
- ・ 保温のために 上に、橋軸方向に2層品のエアマットを2枚重ね、スプレー糊により点付けし敷設する。(技術資料を添付する。)
- ・ 飛散防止用に水平養生ネットを布設する。
- ・ 湿潤・保温養生を3か月間継続する。
- 打継処理面を含む養生方法概念図を図4-11に示す。

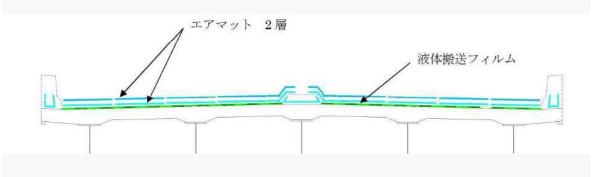



図4-11養生概念図

#### <床版型枠設置部の養生>

- ・ 底枠部分のジェットヒーターによる保温は、10~13℃を1週間保持し、2週間目に吊り足場全体を覆う保温シートを撤去する。
- ・ 保温シートの撤去後、型枠を脱枠し、コンクリート面に を貼り付け封緘養生 を行う。型枠設置期間を含め<u>打設後3か月継続する</u>1ヶ月を封緘養生期間とする。

## 5. 品質管理計画

## 5-1 コンクリート受取検査

### 以下に検査項目、規格値、試験頻度を示す。

試験項目	規格値	試験頻度
スランプ	12.0 cm ± 2.5 cm	全アジテータ車
空気量	6.0%±0.9%	アジテータ車1台目~4台目
		50m³ (13 台目)、100m³ (25 台目)、144m³ (36 台目)
コンクリート温度	10°C ±3°C	全アジテータ車(規格外でも受け入れ可能。生コンプ
		ラントへ調整指示のこと)。
単位水量	$155 \text{ kg} \pm 15 \text{ kg}$	午前1回(1台目)、午後1回(36台目)
		荷卸し時に品質の変化が見られたとき。
塩化物総量	$0.3 \text{ kg/m}^3$	午前1回(1台目)、午後1回(36台目)
		ただし、午前の試験結果が規制値の 1/2 の場合、午
		後の試験は省略する。
圧縮強度試験	σ 7≧20.4N	標準養生:7日、28日、56日、91日 各3本計12本
	$(\sigma \operatorname{ck} \times 0.85)$	(2 台目)
	σ 28≧24N	現場封緘養生:7日、14日 各3本計6本(36台目)
	(呼び強度以上)	

#### 5-2 変形管理

- ・コンクリート打設による鋼主桁の変形管理のために、下図の中央桁の地覆後打ち部にエポキシ鉄筋を設置し、打設前後の高さ確認を行う。
- ・コンクリート打設中の変形管理としては、図5-1に示す G3 桁(中央分離帯部)の C4 測点(支間中央)において、全打設数量の約半分、 $72 \,\mathrm{m}^3$  打設完了時に支間中央のたわみが 25 mm程度であることを測量により確認する。(コンクリート打設による鋼主桁の支間中央のたわみ量は、上部工設計計算書によると 53 mmで、 $72 \,\mathrm{m}^3$  打設時の理論変形量は、 mmである。)

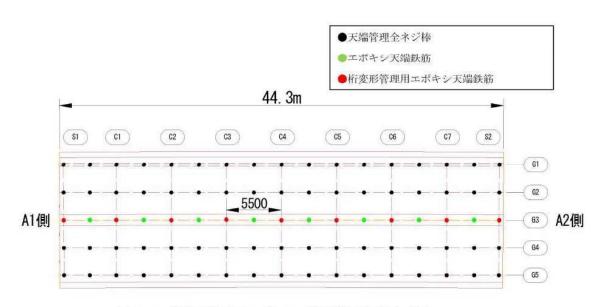



図5-1桁変形管理用エポキシ天端鉄筋は位置図 (赤)

## 5-3 打設管理分担

以下に打設管理における責任分担と管理での注意点を示す。

責任者	管理項目と注意点
全体管理者	・コンクリート打設に関するすべてを総括管理する。
	・打込箇所をポンプオペレーターに指示する。
	・バイブレーターの締固め (50 cm間隔で 8 秒とする。) の指示
	及びその確認を行う。締固めは、筒先でφ50mm、後追いで
	・打ち重ね部分に小旗をたて、打込時間を記入し 1.5 時間以内
	に打ち重ねすることを確認する。
打設管理者	・1.5 時間を過ぎた場合はバイブレーターの挿入ピッチを 25 cm
	に変更指示する。
	・アジテータ車の入場を確認し連続的に打設できるように打込
	速度を調整する。
	・生コンクリートの受取試験結果とポンプからの排出時の性状
	を目視確認し、異常時には総指揮者に連絡する。
生コンクリート	・にて練混ぜ立会い管理を行う。
品質管理者	・受け入れ試験に立会い、結果を無線で総指揮者に報告する。
養生温度管理者	・底型枠の下に配置したヒーターでの養生温度管理を行う。
	・打設中から養生環境温度は、10~13℃に保つ。
埋込計器管理者	・計測工用埋込み計器の管理を行う。
	・埋込み計器への直接生コンの投入やバイブレーターの接触を
	避けるよう注意指示する。
変形管理者	・G3 鋼主桁上の変形計測用エポキシ鉄筋により打設前後の高
	さ計測を行う。
	・打設中、約半分の打設終了時に支間中央のたわみ計測を実施
	し総指揮者に報告する。
仕上げ管理者	・仕上げ補助剤の散布規定量をマーキングした 1m²の範囲に実
	際に散布することで、左官工に必要散布量を実感させる。
	・ジョウロの容量に合わせた散布エリアを現場に明示し必要量
	を確実に散布するように指示管理を行う。
	・養生シートの布設時期を左官工と協議し開始時期を指示す
	る。
型枠・支保工	・型枠支保工の点検を行い、緩んだナットの増し締めを行う。
点検者	・ノロ漏れ箇所についてはウエスにて間詰する。
打設指揮者	・打設管理者に指示のもと打設の総指揮を行う。

## (8) 床版コンクリートの橋面仕上げの留意点

#### 1. 橋面仕上げの重要性

防水工の防水性能に支障が生じると、RC 床版のコンクリート面に水が作用することとなり、これが原因で土砂化が誘発される。一方、RC 床版本体の平坦性に問題があると、写真 - 1 のように滞水の原因となり、これは土砂化を促進させる一因となる。



写真-1 平坦性不良のため滞水箇所が生じた事例

また、床版コンクリートの橋面仕上げが不適切であると写真-2のように凹凸が大きい表面の仕上がりとなったり、写真-3のように表面に均しの跡が残ったりする。また、写真-4のように、床版施工作業員以外の人員の移動を考慮して、床版施工面に単管足場を設置したために、足場の下に仕上げ機械が入らず、写真-5のように足場下が仕上げ不良となった事例もある。



写真-2 表面に凹凸等が多い事例



写真-4 床版施工面に足場を設置した例



写真-3 均しの跡が残ってしまった事例

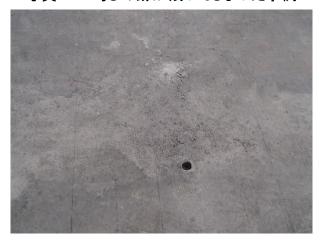



写真-5 足場下の仕上がり状況 (写真中の穴は単管の除去跡)

このような状況になると、コンクリート表面の滞水を防止するため表面の凹凸を削るなどの対策が必要となる場合が多い。また、コンクリート表面を削る段階で、表面に微細なひび割れが発生するため、コンクリート中に水が浸透しやすい状態となる。このため、写真-6のように含浸剤を塗布するなどの対策を併用する場合が多い。



写真-6 表面の凹凸を削り、含浸剤を塗布した事例

表-1 は、A~Dまでの4橋について、橋面仕上げの状態を目視で相対的に判定した結果と透気試験の結果を比較したものある。短繊維の有り無しなどの主要な仕様も記載した。なお、A~D橋は、いずれも東北仕様で建設されたRC床版であり、セメントは高炉B種を使用しており、目標とする水結合材比(W/B)は45%程度である。D橋については、橋面の仕上がり状態が目視判定で「劣」となっている状態での透気試験の結果と、補修のため表面を削った後に含浸剤を塗布した後の透気試験結果も記載している。

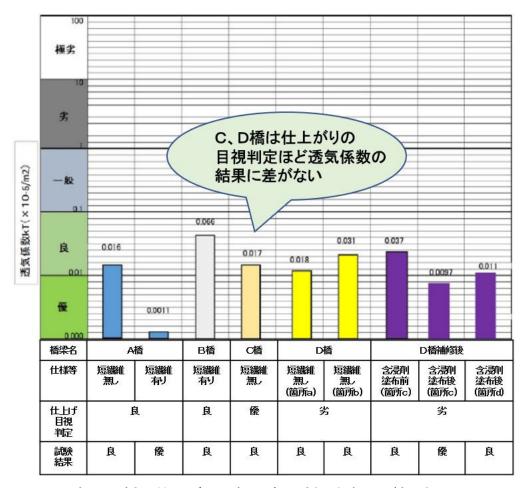



表-1 橋面仕上げの目視判定と透気試験の比較の例

橋面仕上げの目視判定は、A、B橋が「良」、C橋が「優」、D橋が「劣」となっている。一方で、C橋とD橋では目視判定の結果に大きな差があるにも関わらず、透気係数はどちらも「良」となっている。D橋は補修前が「良」であり、補修後に含浸剤を塗布した箇所では一部で「優」の結果が得られたが、含浸剤塗布の有無による透気係数に大きな差は見られなかった。

表 -2 は、 $A \sim D$ までの4橋について、橋面仕上げの状態を目視で相対的に判定した結果と吸水試験の結果を比較したものある。その他の項目は表 -1 と同様である。

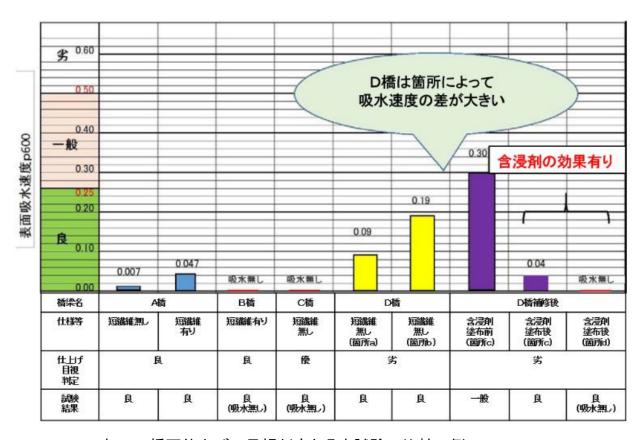



表-2 橋面仕上げの目視判定と吸水試験の比較の例

橋面仕上げの目視判定が「良」または「優」のA~C橋は、吸水速度が非常に小さいか吸水しないという「良」の結果となっており、目視判定の結果と吸水試験の結果は同じ傾向を示している。一方でD橋は、吸水試験の結果は「良」でも、吸水速度はA~C橋に比べて大きく、「一般」に近い数字となっていることから吸水速度は橋面の目視判定の結果を一定程度反映していると思われる。

補修後のD橋の試験結果を見ると、含浸剤塗布後に吸水速度が大きく低下していることから、含浸剤には床版コンクリート表面の水を浸透しにくくする効果があると思われる。

橋面仕上げの相対的な目視判定結果と、透気試験、吸水試験の結果を比較したが、吸水試験の方が 目視判定の結果を比較的反映している結果となった。また、補修時には含浸剤を併用することで床版コ ンクリート表面の水を浸透しにくくする効果があることが明らかとなった。

このように、RC 床版の橋面の仕上げが補修を要するほど悪いと、仕上げが良好な床版と比較して、特に吸水速度の結果に差が出ることがわかった。これは、橋面仕上げが悪いと滞水しやすい状態となって土砂化を促進することや、コンクリート中への凍結抑制剤混じりの水の浸透を助長する可能性が高いことを示しており、橋面の仕上がりの良否は、その RC 床版の耐久性に大きく影響する。

このため、橋面の仕上がりが不良とならないように、施工計画段階で橋面仕上げについて十分検討しておく必要がある。

#### 2. 施工段階における橋面仕上げ不良の発生リスク

東北仕様の RC 床版は、設計段階で多重防護による耐久性を確保し、施工段階では品質を確保する必要がある。現在施工が行われている東北仕様の RC 床版は、高さ管理のための高さ表示棒を写真 - 7 のように下側鉄筋に定着して、作業員の移動などで生じる上側鉄筋のたわみによる影響を受けないような工夫がされている現場が出てきている。また、写真 - 8 のようなバイブレータの挿入位置を補助する治具を使用して締固めが確実に行われるように工夫がなされた現場もある。



写真-7 高さ表示棒を下側鉄筋に定着した事例



写真-8 バイブレータの挿入位置を補助する 締固め用の治具(40cm×40cm×9マス)

このように高さ管理や打込み・締固めで品質確保の工夫がなされたとしても、橋面仕上げを行う左官工の施工体制(班編制、各班の人数、技能、経験等)によっては、橋面に滞水箇所が生じたり、凹凸が出たりする可能性がある。

ここでは、床版の施工の実例に沿って、どの段階で橋面仕上げに不具合が発生するリスクがあるかを解説する。

床版の施工は、まず始めにポンプ車から圧送された生コンを筒先から打ち込むところから始まり(写真 -9)、その後を追うようにしてバイブレータによる締固めが行われる(写真 - 10)。



写真-9 打込みの事例



写真-10 締固めの事例

#### ① 荒仕上げ段階で床版の表面の高さが決まる

バイブレータによる締固めが終わった箇所から、左官工による荒仕上げが行われる(写真-11)。この荒仕上げによって、床版の表面の高さがほぼ決まるため、この段階での高さ管理に留意する必要がある。



写真-11 左官工による荒仕上げの事例

### ②平坦性は金ゴテ仕上げの時期で決まる

コンクリート表面が仕上機械を載せられる程度まで硬化したら、被膜養生剤を散布して(写真—12)、仕上げ機械(円盤式)(写真—13)による表面仕上げを行い、その後かんじき等を履いた左官工が床版に載ってもその足跡が消せる程度の硬化状態で、金ゴテによる仕上げが行われる(写真—14)。この金ゴテ仕上げに入る時期で、表面の平滑さなどの平坦性の良否が決まると言って良い。



写真-12 被膜養生剤を散布している状況



写真-13 仕上げ機械(円盤式)での仕上げ作業



写真―14 左官工による金ゴテ仕上げの事例

写真-14を見ると、金ゴテ仕上げを行う左官工の後ろには、仕上げ機械で均し作業を行う左官工がいる。さらにその後ろでは、アジテータ車待ちで打込み・締固めが中断しているが、ここには荒仕上げを行う左官工がいるはずである。この事例は9月下旬の施工であったが、日中の気温上昇が大きく、コンクリート表面の硬化が予定より速く進んでも、左官工が対応可能な施工体制であることがわかる。

この事例で、仮に左官工による金ゴテ仕上げの時期が遅いと、コンクリートの硬化が進んでいるため、 仕上げ機械の均し跡等を金ゴテでは消せなくなり、表面に凹凸が残った仕上がりとなることは容易に想像 できる。

#### ③硬化速度に適した左官工の体制確保が重要

図-1 は、左官工の施工体制とコンクリートの硬化速度による橋面仕上げの不具合発生のイメージである。横軸は荒仕上げ開始からの時間経過を表しており、時間経過に伴ってコンクリートの硬化が進んでいくため、機械仕上げの開始時期や金ゴテ仕上げの開始時期も示している。縦軸は左官工の施工体制を示しており、体制(a)は、荒仕上げ班、機械仕上げ班、金ゴテ仕上げ班がそれぞれ独立しており、各班が他班の仕事を兼務することが無い体制である。一方、体制(b)は、荒仕上げ班が施工完了後に金ゴテ仕上げ班を兼務する体制である。通常は、荒仕上げ班の一部が金ゴテ仕上げ班を兼務する事はあっても、体制(b)のような荒仕上げ班が完全に金ゴテ仕上げ班を兼務するような極端な施工体制は実施工では採用される可能性は無いと思われるが、橋面仕上げの不具合発生リスクをイメージしやすいように体制(b)を模式的に採用している。

体制(a)は、各班が独立しており各班が他班の仕事を兼務することが無いため、機械仕上げや金ゴテ 仕上げ開始時期に左官工が作業を開始するため、橋面仕上げで不具合が発生するリスクは小さい。一 方、体制(b)は、荒仕上げ班が金ゴテ仕上げ班を兼務しているため、荒仕上げが終わってから金ゴテ仕 上げに取りかかっては、既に金ゴテ開始時期を過ぎているため、硬化が進んだコンクリートを仕上げる事 が困難となり、橋面仕上げの不具合が発生するリスクが大きくなる。

しかしながら、体制(a)のように荒仕上げ班、機械仕上げ班、金ゴテ仕上げ班を独立して確保できるほど左官工を集めることは難しい場合が多い。このような場合には、荒仕上げ班の作業完了後に金ゴテ仕

上げを行っても仕上げ作業が可能となるように、遅延剤などでコンクリートの硬化を遅らせることで、橋面 仕上げの不具合発生リスクを小さくすることができる。ただし、遅延剤はそこ効果が切れるとコンクリート の硬化が急速に進む場合があるので、遅延剤の効果が得られる時間やその後の硬化特性を試験練りの 段階で確認しておく必要がある。

東北仕様のRC床版の橋面仕上げは、N式貫入試験の結果と左官工の経験から得られる作業開始時期の相関をとって、コンクリートの硬化速度と各段階の仕上げ作業の開始時期を予め想定し、予定している左官工の体制で各仕上げ作業に遅延が生じないか事前に検討しておくことが重要である。

日中の気温が高温となる6月~9月の時期に施工した床版に橋面仕上げの不具合が多い傾向にある。コンクリートの硬化は、気温が高いほど速く進むため、6月~9月施工の RC 床版は、遅延剤等の活用も含めたコンクリートの硬化速度に適した左官工の施工体制を確保することが、橋面仕上げの不具合を抑制する上で重要である。

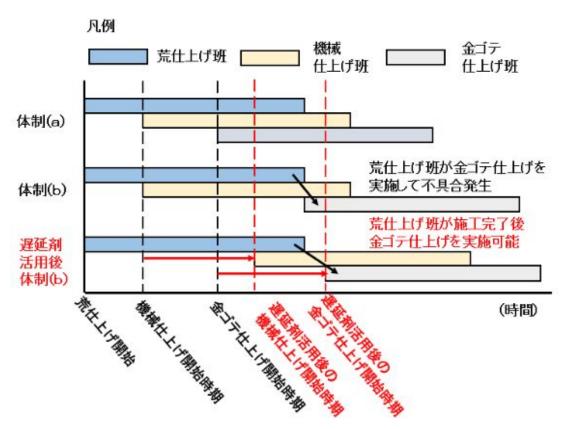



図-1 左官工の施工体制とコンクリートの硬化速度による不具合発生のイメージ

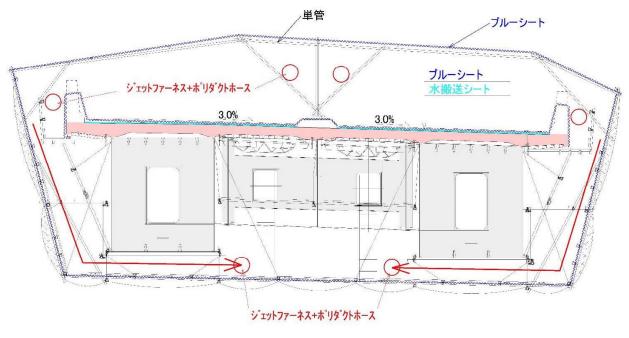
#### 3-(8). 寒中コンクリートの養生計画の例

#### 5-7-2 保温養生計画

床版コンクリート打設時期は11月であり、現場となる岩手県下閉伊郡普代村の11月下旬の日平均気温は、気象庁の観測データ(過去30年平均)より4.6℃である。

今回の床版コンクリート打設(計3回)のうち、3BL打設(1回目)は11月13日を予定しているため、必要に応じて、下記保温養生を計画する。

水搬送シートを厚手のブルーシートで覆い、その上にエアークッション (梱包用緩衝材等) を 1~2 枚敷設し、さらにブルーシートで覆うことで、保温性の向上を図る。




#### 5-7-3 給熱養生計画

今回の床版コンクリート打設(計3回)のうち、1BL(2回目)打設日:11月30日、2BL(3回目)打設日:12月8日を予定している。

現場となる岩手県下閉伊郡普代村の12月上旬の日平均気温は、気象庁の観測データ(過去30年平均)より3.2℃であり、寒中コンクリートの施工が想定される。そこで必要に応じて、上記保温養生に替えて、下記給熱養生を計画する。

- ・事前に打設個所外周をブルーシートで囲う。
- ・打設時は、急激な温度低下が無いように囲いを必要以上に開閉しない。
- ・打設時のコンクリート温度が5℃以上であることを確認する。
- ・養生温度の目標は5~10℃とする。(打設後12日間程度)
- ・養生期間は、平成 29 年制定コンクリート標準示方書(施工編)P165 の表 12.6.1 よりコンクリート強度が  $15N/mm^2$  に達するまでとする。また、同 P167 の解説 表 12.6.1 より、打設後 12 日間は養生温度を 5 C以上に保つ。必要強度が得られたのちも、コンクリートの急冷を防ぎ、その後の確実な強度発現を得るために、その後さらに 2 日間は養生温度を 0 C以上に保つ。
- ・養生温度を 5~10℃に保つためにジェットヒーター等で必要な熱量を供給する。 このとき、コンクリート表面に直接温風を当てないように留意する。



養生囲い標準断面図

給熱に必要な熱量を計算する。計算にあたっては、2010年改訂 日本建築学会の寒中コンク リート施工指針・同解説の(9.1)式から(9.6)式を用いる。次項に計算結果を添付する。

#### 寒中コンクリート施工時の給熱養生(給熱機台数)の検討

1. 検討の流れ

(STEP1) 養生上屋の伝熱による熱損失量の算定

 $Q1=\Sigma$  ( Kn・Sn) ここに、Q1: 養生上屋の伝熱による 1 時間、温度差 1  $\mathbb C$  あたり熱損失量 (W/ $\mathbb C$ )

Kn:各上屋材料の熱損失係数 (W/m²℃)

Sn: 各上屋材料の面積(m²)

(STEP2) 換気回数の算定

 $N=N_S \times A \times B \times C \times D$  ここに、N: 養生上屋内部空気の 1 時間あたり換気回数の仮定値(回/h)

Ns:基準換気回数(回/h)

A: 囲いサイズ材による補正係数

B: 囲い材の継ぎ目の状態による補正係数

C:上屋の平面形(辺長比)による補正係数

D:囲い材の1重・2重と継ぎ目の良否状態による補正係数

(STEP3) 養生上屋内の換気による熱量損失の算定

Q2=0.35×N×V ここに、Q2:養生上屋の換気による1時間、温度差1℃あたり熱損出量(W/℃)

0.35:空気の容積比率(W/m³℃)V:養生上屋内部の空気容量(m³)

(STEP4) 初期養生期間の平均気温の仮定

Tme = Tsme - 4 ここに、 $Tme : 初期養生期間の平均気温の仮定値(<math>\mathbb{C}$ )

Tsme:初期養生期間の平均気温の平年値(℃)

(STEP5) 養生上屋の伝熱・換気による熱損失量の算定

Q=(Q1+Q2)・(Ti-Tme) ここに、Q: 養生上屋の伝熱・換気による熱損失量(W)

Ti :計画養生温度(℃) (5℃以上)

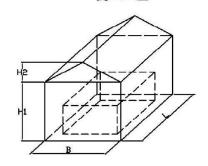
(STEP6) 給熱機の必要台数の算定

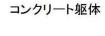
Nj=Q/Qj ここに、Nj: ジェットヒーターの必要台数(台)

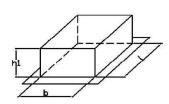
Qj:ジェットヒーターの発熱量(W/台)

1 kcal = 1.1628 W

2. 準拠基準·参考文献


・寒中コンクリート施工指針・同解説(1998改訂)


日本建築学会


### 3. 給熱機必要台数の検討

### (1) 養生上屋・躯体の寸法

養生上屋







	項目	1BL	2BL	Case3	Case4	Case5	適用
	H1 (m)	5. 00	5. 00			<u> </u>	
養生	H2 (m)	1.00	1.00				
上屋	B (m)	14.0	14. 0				
	L (m)	33.6	56.6				
NATION 1200 1	h (m)	0. 23	0. 23				
躯体	b (m)	12. 67	12.67				
	1 (m)	33.6	56. 6				

### (2) 熱損失係数の算定

1) Q1の算定 (STEP1)

項 目			1BL		2BL		Case3		Case4		Case5	適	用
Kn (W/m ² °C)		S	$\ln{(m^2)}$		$Sn(m^2)$		$Sn(m^2)$		$Sn(m^2)$		$Sn(m^2)$	儿白	т
K1(地盤, コンクリート)	2.9	S1	470.4	S1	792.4	S1	0.0	S1	0.0	S1	0.0	表	₹1
K2(シート)	10.0	S2	965. 2	S2		S2	0.0	S2	0.0	S2	0.0	表	₹1
Q1 (W/°C)		11	1, 015. 9	]	7, 502. 4		0.0		0.0		0.0		

[※]熱損失係数、各面積は実状にあわせて適宜追加・変更すること

表1 上屋材料の熱損失係数 [長島]

〔単位:W/m²℃ (kcal/m²h℃)〕

上屋材料(部材の表面の状況)	熱損失	係数	
合板12mm + シート	7.0	(6.0)	
薄鉄板(トタン板)	14.0	(12.5)	
シート	10.0	(8.6)	
ポリカーボネート	8.5	(7.5)	
厚手ポリフィルム*1	9.3	(8.0)	
地盤、コンクリート*2	2.9	( 2.5)	

* 1:継手をファスナー加工または接着加工したもの * 2:上屋の囲い材料以外で無風状態,他は風がある状態

2) Nの算定 (STEP2)

1	11 V 3 T (0 1 L 1 2)						
	項目	1BL	2BL	Case3	Case4	Case5	適用
	Ns:基準換気回数(回/h)	3.0	3.0				表2, 図1
	A:囲いサイズ補正	1.0	1.0				表3
	B: 囲い継目状態補正	0.5	0.5				表4
	C: 辺長比補正	1.5	1.8				表5
	D: 囲い数と継目良否補正	1.0	1.0				表6
Ī	N (回/h)	2. 25	2.70	0.00	0.00	0.00	
			(STEEL 10 100 C)	20.00	37.00	37072 34574	

表2 各地の換気回数計算用風速 [長谷川]

	地	域	風速(m/s)
	旭	JII	1.8
101	帯	広	2.2
化	20	路	4.0
毎	札	幌	2.4
Ht	1	樽	3.0
肖	苦	小牧	4.6
-	室	蘭	6.0
	100	館	3.0
東	青	森	3,4
999	1	戸	4.0
比	惑	120	3.1

	地	域	風速(m/s)
	窜	古	2.2
	秋	田	5.6
東	酒	EE	6.0
北	Ш	形	1.7
-14	仙	台	3.9
	合津	若松	2.1
関	字书	官部	1.9
関東	秩	父	1.3
中鄉	新	调	4.6
部	I:	越	2.0

	地	域	風速(m/s)
П	富	ш	2.9
	金	识	2.4
+	福	井	2.5
	長	野	2.6
	長松	本	2.1
部	甲	府	1.9
	飯	田	1.6
	Ġ	山	1.4
近畿	上	野	2.9
中国	津	Ш	2.0

「注】 1990年までの資料による

表3 囲い材サイズによる補正係数A [鬼頭]

int		囲い材サ	イズ(m)	備考	補正係数	
囲い材		$\ell_1$ $\ell_2$ (1		$(1/\ell_1 + 1/\ell_2)$	A	
	70	3.6	5.4	0.46	1.0	
		3.6	4.8	0.49	1.1	
建築工事	第二重田	2.7	3.6	0.65	1.4	
	5.55	1.8	5.4	0.74	1.6	
シー	1	1.8	5.1	0.75	1.6	
		1.8	4.8	0.76	1.7	
		1.8	3.6	0.83	1.8	
^		0.9	1.8	1.67	3.6	
台	板	0.6	1.8	2.22	4.8	

[注]  $\ell_1$ および $\ell_2$ は矩形の短辺および長辺の長さ m

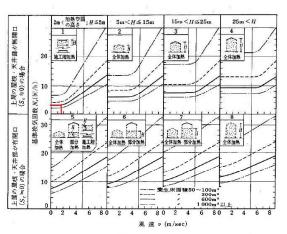



図1 基準換気回数曲線 [鬼頭]

表4 囲い材継目状態による補正係数B [鬼頭]

継目	の状態	補正係数B	すき間幅 (cm)	備考
	4.7	0.3	0 ~ 0.5	目張りなどによりほとんど隙間・開口が無い場 合
良	好	0.5	0.5 ~ 1.0	囲い材同士のつき合わせ・緊結が良く隙間開口 が無い場合
普	通	1.0	1.0 ~ 2.0	所々に隙間がある場合
やゃ	不良	1.5	2.0 ~ 3.0	緊結がルーズで隙間・開口が多い場合
不	良	3.0	3.0 以上	大きい隙間・開口が多い場合

表5 上屋の平面形(辺長比)による補正係数C [鬼頭]

囲い材	事務所•	商業ビルな	学校・アパートなどに多い		
辺長比 $X/Y$	1.0	2.0	3.0	5.0	7.0
補正係数 C	1.0	1.2	1.5	1.8	2.1

[注] XおよびYは矩形の長辺および短辺の長さ(m)

表6 囲い材の一重・二重と継ぎ目の良否状態による補正係数D [鬼頭]

	外囲いの	の種類	内囲い の継目		補正係数D
一重囲い	シートまたは合板				1.0
			良	好	0.7
	シー	,	普	通	0.8
	2 -	۲	やや	良好	0.9
二重用い			不	良	1.0
一里団い			良	好	0.6
		<b>.</b> —	普	通	0.7
	合	板	やや	良 好	0.8
			不	良	1.0

3) Q2の算定 (STEP3)

項目	1BL	2BL	Case3	Case4	Case5	適用
空気の容積比率(W/m³℃)	0.35	0.35	0.35	0.35	0.35	固定値
N:換気回数(回/h)	2. 25	2.70	0.00	0.00	0.00	2) より
V:養生内部の空気容量 (m³)	2587. 2	4358. 2	0.0	0.0	0.0	
Q2 (W/℃)	2, 037. 4	4, 118. 5	0.0	0.0	0.0	

4) Tmeの算定 (STEP4)

項目	1BL	2BL	Case3	Case4	Case5	適用
Tsme: 平均気温の平年値	3. 2	3. 2	3. 2	3. 2	3. 2	建設地の値
Tme (°C)	-0.8	-0.8	-0.8	-0.8	-0.8	=Tsme-4

※初期養生期間の平均気温の平年値は指針の資料7.2によるか、気象庁データ等により決定する。

### ※過去30年間の普代観測所の12月上旬の平均気温を採用

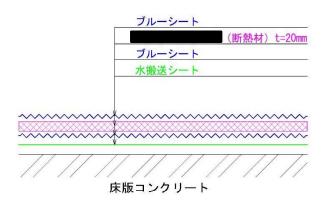
5) Qの算定 (STEP5)

/ 4 - 5 / C (SIBIS)						
項目	1BL	2BL	Case3	Case4	Case5	適用
Q1 (W/°C)	11, 015. 9	17, 502. 4	0.0	0.0	0.0	1) より
Q2 (W/°C)	2, 037. 4	4, 118. 5	0.0	0.0	0.0	2) より
Ti:計画養生温度(℃)	7.5	7. 5				
Tme:平均気温の仮定値	-0.8	-0.8	-0.8	-0.8	-0.8	4) より
Q (W)	108, 343	179, 454	0	0	0	

### (3) 給熱機必要台数の算定

1) Njの算定 (STEP6)

/ NJV/ AP (OILIO)			70		_	On the control of the
項目	1BL	2BL	Case3	Case4	Case5	適用
Q(W)	108, 343	179, 454	0	0	0	5) より
Qj: ジュットヒーターの発熱量(kcal/h台)	28,600	28,600				カタログ、等
Qj(W/台)	33, 256	33, 256	0	0	0	1.1628W=1kcal/h
Nj (台)	4	6				


#### 以上より

ジェットヒータの必要台数は、1BL:4台、2BL:6台である。

### 5-7-4 給熱養生後の保温養生計画 (湿潤養生期間内の凍結防止)

所定期間の給熱養生実施後、湿潤養生期間(約1ヶ月)内におけるコンクリート表面(養生水)の凍結防止対策として下記保温養生を継続する。

- ・設置済みのブルーシートの上に、断熱材 ( t = 20mm) を敷設し、さらに ブルーシートでその表面を覆うことで、保温性の向上を図る。
- ・養生温度の目標は0℃以上とする。



下表の防水工の施工状況把握チェックシートの、各工種の番号が黄色で着色されているチェック項目について、どのような点に着目するのか、実施工時の写真をもとに施工上の留意点として取りまとめた。

工種	番号	チェック項目	確	認
	1	ゴミや埃をコンプレゥサー等を用いてきれいに掃除しているか(事例1~5あり)	ï	
	2	床版の水分量は10%以下であることを確認しているか(目標は5%以下が望ましい)		
	3	残存アスは除去されているか	1	
	4	レイタンスなどの泥霧部は除去されているか		
	5	目視確認出来る被膜養生剤は除去されているか	-	
下地	6	断面修復材により補修された箇所がある場合はジョイント部にプライマーを二度塗りしているか	35	
処 理	7	キメ深さが1mm以下であるか		
	8	プライマーの塗布量は適切であるか	35	
	9	地覆等の端部垂直面や排水枡周りのプライマーが薄塗りとならないようにしているか		
	10	床版ひび割れ箇所は、事前にケイ酸塩系含浸材で補修しているか(無害なひび割れ)		
	11	プライマーは完全に乾燥しているか	Š.	
	12	床版ひび割れ箇所は、プライマーが二度塗りとなるように施工しているか		
	1	防水シートは勾配の低い方から敷設しているか		
	2	防止シートは定められた重ね幅をとっているか(10cm以上)		
	3	防水シートの横断重ね位置を1.0m以上ずらしているか		
	4	防水シートは施工線に沿って貼れるかを確認し巻き戻してから貼り付けているか		
	5	貼り付け用アスファルトの温度は適切か		
防水	6	貼り付け用アスファルトを入れた缶などをシートの上に置くなどしてシートを破損(溶解)させていないか	1	
シート	7	シートを貼り付け直後、シート上を歩いていないか(足跡によりシートの寄れ等が生じていないか)		
	8	シートを貼り付ける際、ロール芯や鉄棒等を用いて均等な力で押せているか		
	9	シート貼り付け時に、シート端部から貼り付け用アスファルトがはみ出しているか(全体に回っているか)		
	10	防水シートからはみ出たアスファルトは馴毛で均一に均しているか(はみ出た量は適量か)	1	
	11	貼り付け用アスファルトは均一な量(厚さ)で流し込めているか		
	12	空気泡処理箇所を適切に補修しているか		
	1	端部処理剤(シルパーメッシュテープ)は端部の直角面に沿って敷設されているか	1	
端 部 理	2	貼り付け用アスファルトは垂直面が薄塗りとならないように施工しているか		
AL AE	3	導水パイプは端部に敷設し、端末を排水枡に挿入しているか		
	1	仲縮装置や後打ちコンクリートを適切に保護しているか		
	2	防水シート上を施工機械が移動する時、こぼれた合材や異物を清掃しているか	-	
	3	成型目地用のプライマーは隙間なく塗布されているか	1	
舗 設	4	プライマーは完全に乾燥しているか	.13	
準備	5	表層施工前に貼り付ける成型目地材は剥がれたり、隙間なく貼られているか		
	6	成型目地材の総目は重ねて貼っているか、また縦断勾配の高い方が上になるように貼っているか	33	
	7	基層の定規型枠は防水シートを傷つけないよう釘固定していないか		
	8	使用するアスファルトフイニッシャーのタイヤにアスコン等付着していないか	-	
	1	基層合材の到着、敷き均し、転圧の温度管理は適切か	Č.	
	2	表層合材の到着、敷き均し、転圧の温度管理は適切か		
舗装端部	3	端部への合材の敷き均しは適切に行われているか		
の転圧	4	端部の転圧は適切に行われているか(必要に応じてブレートを使用する)		_
	5	合材と成型目地はしっかりと一体化しているか		_

※表中の__の項目は「流し貼り型」に関する項目を示す

[※]表中の番号欄の着色部は実施事例紹介のあるチュック項目

エ	種	下 地 処 理
番号	① -1	ゴミや埃をコンプレッサー等を用いてきれいに掃除しているか
	床版コンク	フリート面にプライマーの塗布前、防水シートの施工前の落ち葉、埃、砂や小石の清掃を入念に
補足	実施する	。この清掃は、防水シート施工後、基層工施工中、表層工施工前にも実施する。排水桝や水抜き
	孔、伸縮對	<b>麦置付近にゴミが特に溜まりやすい。</b>

### 状 況 写 真



写真-1 防水シートに付随した硅砂が飛散し、水抜き孔付近に集積した例 (対応例:防水シートの設置から基層工の舗設までのあき期間を短くする)



写真-2 排水枡付近に集積したゴミを表層工前に清掃

エ	種	下 地 処 理				
番号	1 -2	ゴミや埃をコンプレッサー等を用いてきれいに掃除しているか				
補足	掃除が不十分な例:防水シートと床版コンクリートの間に残留している小石が、					
	合材運搬ダンプにつぶされ防水シートが損傷。					

### 状 況 写 真




写真-1 常温貼りで複数孔の損傷例



写真-2 流し貼りでのシート損傷例(孔が開く)

エ	種	下 地 処 理				
番号	1)-3	ゴミや埃をコンプレッサー等を用いてきれいに掃除しているか				
補足	掃除がる	下十分な例:防水シートと床版コンクリートの間に残留している小石が、合材運搬ダンプにつぶされ				
	防水シートが損傷。					
	状 況 写 真					



写真-1 複数孔の損傷が発生



写真-2 防水シート上を舗設中に清掃する事で小石等で防水シートが損傷する事を予防できる

エ	種	下 地 処 理		
番号	1-4	ゴミや埃をコンプレッサー等を用いてきれいに掃除しているか		
補足	#足 防水シートの損傷箇所の補修例。			
	_	U		

#### 状 況 写 真



写真-1 清掃後、損傷箇所のサイズに合わせた成型目地材を設置



写真-2 ガスバーナにて成型目地材を暖め溶解させる



写真-3 溶解後、手先で成型目地材を均して孔を埋める 黒ずんでいる箇所:防水シートも一部分溶解される

エ	種	下 地 処 理				
番号	1)-5	ゴミや埃をコンプレッサー等を用いてきれいに掃除しているか				
補足	補足 掃除が不十分な例:表層工の施工前、伸縮装置の後打ちコンクリートの段差にゴミ、小石等が集積。					
	作 治 <b>尼</b> 卓					



写真-1 ゴミや小石が溜まっているため成型目地材がヨレて正しく設置出来ない



写真-2 成型目地材を撤収し清掃後、再設置する



写真-3 清掃後の正しい成型目地材の設置状況。この後舗設を開始

エ	種	下 地 処 理
番号	2	床版の水分量は 10%以下であることを確認しているか(目標は 5%以下が望ましい)
		状 況 写 真



写真-1 床版コンクリートの水分量測定状況



写真-2 水分量測定値 4.6% (近接:A) 高周波水分計による測定結果

工種	下 地 処 理
番 号 ③	残存アスファルトは除去されているか

状 況 写 真



写真-1 当日の舗設終了後:防水シート上の残存アスファルトの除去作業

エ 種	<b>E</b>	下 地 処 理
番号	4	レイタンスなどの泥弱部は除去されているか

状 況 写 真



写真-1 床版コンクリートのレイタンスの除去忘れ



写真-2 サンダ-(砥石型)によるレイタンス除去例

エ	種	下 地 処 理
番号	5	目視確認できる被膜養生剤は除去されているか







写真-1 サンダーによる被膜養生剤を除去した例: 緻密性が失われその後、含浸剤を 防水工との接着を阻害しないために塗布する



参考写真ー天端仕上げ高さの管理ネジ棒の撤去タイミングが遅く、機械式仕上げの トロウエルが十分に使えず、部分的に被膜養生剤が残った例

エ	種	下 地 処 理
番号	8	プライマーの塗布量は適切であるか

状 況 写 真



写真-1 プライマー塗布量の検収状況



写真-2 プライマー塗布完了状況(均一でムラがない状態)

エ	種	下 地 処 理
番号	9	地覆等の端部垂直面や排水桝周りのプライマーが薄塗りにならないようにしているか

状 況 写 真



写真-1 地覆、排水孔周りを刷毛による塗布状況



写真-2 刷毛による塗布状況(中央分離帯側) この時に薄塗りにならないように施工する

エ	種	防水シート
番号	1	防水シートは勾配の低い方から敷設しているか

状 況 写 真



写真-1 本線橋での敷設状況(流し貼り型)



参考写真ーランプ橋での敷設状況(常温貼り型) 直橋に比較し曲橋はシート長さが小刻みになる

エ	種	防水シート
番号	2	防水シートは定められた重ね幅を取っているか(10 cm以上)

状 況 写 真

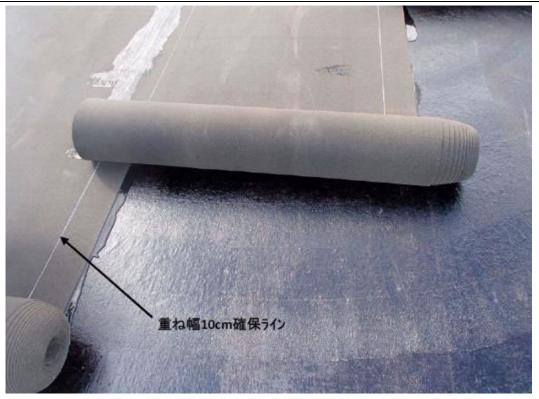



写真-1 防水シート長手方向の重ね幅 10cm 以上(流し貼り型)



参考写真一防水シートの重ね幅ラインの明示(常温貼り型)

エ	種	防水シート
番号	3	防水シートの横断重ね位置を 1.0m 以上ずらしているか

状 況 写 真

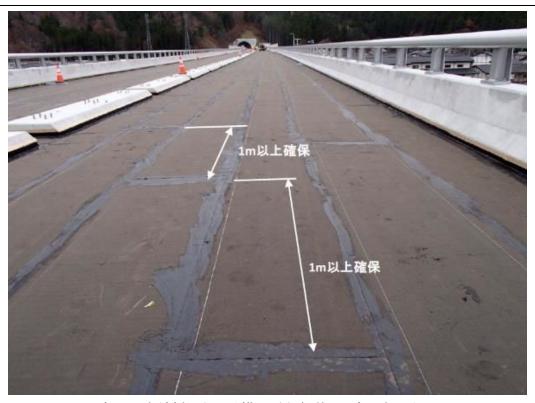
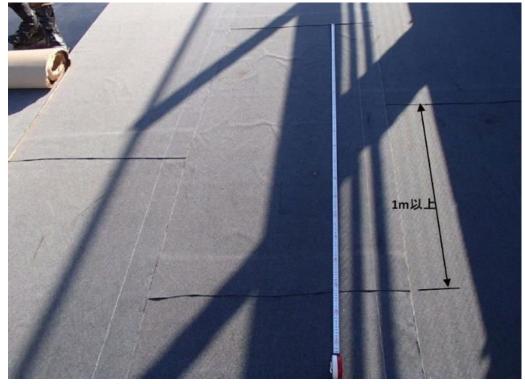




写真-1 本線橋における横断重ね幅状況(流し貼り型)



参考写真-横断重ね状況(常温貼り型)

エ	種	防水シート
番号	4	防水シートは施工線に沿って貼れるかを確認し巻き戻してから貼り付けているか
		状 況 写 真



写真-1 施工線に沿っての試し貼り状況(風のない日を選定)-

番号 ⑤	貼り付け用アスファルトの温度は適切か(特に冬季)



写真-1 固形アスコンパウンド(アスファルト)の溶融釜



写真-2 溶融温度の例:245 度(11 月中旬) メーカーの指定溶融温度による(アスコパウント、3 260℃以下)

エ	種	防水シート
番号	6	貼り付け用アスファルトを入れた缶などをシート上に置くなどしてシートを損傷(溶解)させていな
		いか



写真-1 アスファルト入れ缶を敷設防水シートの前方に仮置き



写真-2 シートの前方にストック缶:アスファルトを柄杓で投入する-

エ	種	防水シート
番号	7	シート貼り付け直後、シート上を歩いていないか(足跡によりシートのヨレ等が生じていないか)



写真-1 防水シート貼り付け(平滑仕上げ)状況



写真-2 防水シート貼り付け後(凹凸若干あるが空気泡ではない) 補足:加熱アスファルトを多めに投入すると凹凸が出来やすい 足跡が残る場合もある(シートの貼りかたでやむを得ない) この場合アスファルトが硬化するまで立入禁止(シートのヨレ等で損傷しやすいため) 基層施工時、アスファルトの熱と重機の転圧で貼り付け用アスファルトが溶けて 足跡は緩和される

エを種	防水シート
番号 8	シートを貼り付ける際、ロール芯や鉄棒を用いて均等な力で押せているか

状 況 写 真



写真-1 ロール重さを利用した敷設例



写真-2 アスファルトをロール重さを利用して押し出すイメージー

エ	種	防水シート
番号	9	シートを貼り付ける際、シート端部から貼り付け用アルファルトがはみ出しているか

状 況 写 真

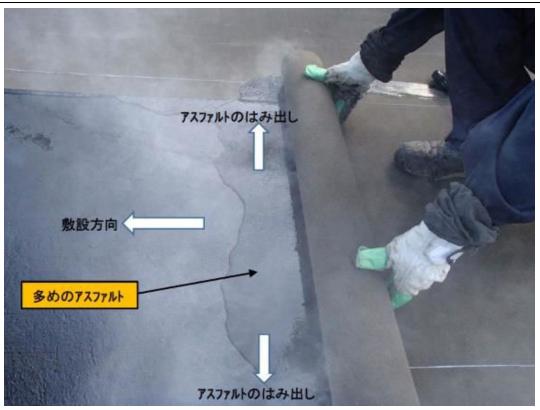



写真-1 防水シート敷設方向にアスファルトを多めに流し込む



写真-2 シート端部からアスファルトのはみ出た状態

エ	種	防水シート
番号	10	防水シートからはみ出たアスファルトは刷毛で均一に均しているか(はみ出た量は適切か)



写真-1 防水シート継目を刷毛により、はみ出したアスファルトを均す状況



写真-2 はみ出したアスファルトの均し完了状況

エ	種	防水シート
番号	11)	貼り付け用アスファルトは均一な量(厚さ)で流し込めているか

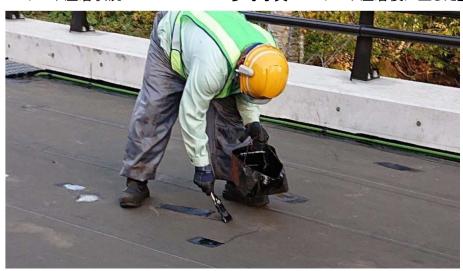
状 況 写 真



写真-1 貼り付け用アスファルト検収例(アスコンパ・ウント、3)



写真-2 アスファルトを柄杓で均一に流し込む(近接)


エ	種	防水シート
番号	12	空気泡箇所を適切に補修しているか?(写真は常温貼りの例)







参考写真-2 シート圧着後に生じた空気泡



参考写真-3 空気泡発生箇所の孔開け処理後、シートの孔開け箇所にアスファルトを上塗りする



参考写真-4 空気泡の発生箇所数が多かったり、強風で飛ばされたりした箇所は 防水シートを再設置する(継目にアスファルトを塗布:強風飛散防止対策)

番号 ① 端部処理剤	」(シルバーメッシュテープ)は端部の直角面に沿って敷設されているか

状 況 写 真

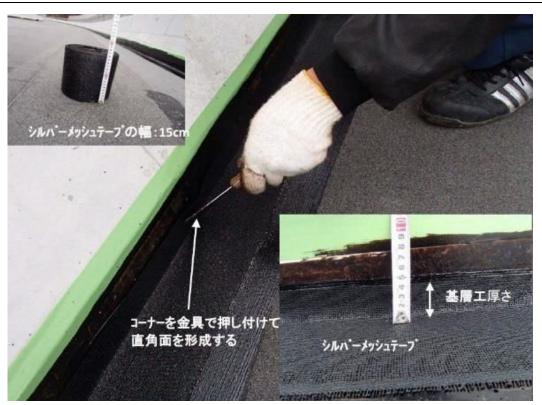



写真 - 1 シルハ・メッシュテープを端部の直角面に合わせて金具を押し当てている状況 このような作業をやらないと直角面になりにくい



写真-3 コーナー(直角)押さえ作業の例

写真-2 直角面の確認状況

エ 種	端部処理
番号 ②	貼り付け用アスファルトは、垂直面が薄塗りとならないように施工しているか

状 況 写 真



写真-1 端部処理剤にアスファルトを直接流し込んで量を確保している状況



写真-2 流し込んだアスファルトを刷毛で垂直面に塗布している状況

エ	種	端 部 処 理
番号	3	導水パイプは端部に敷設し、端末を排水枡に挿入しているか

状 況 写 真

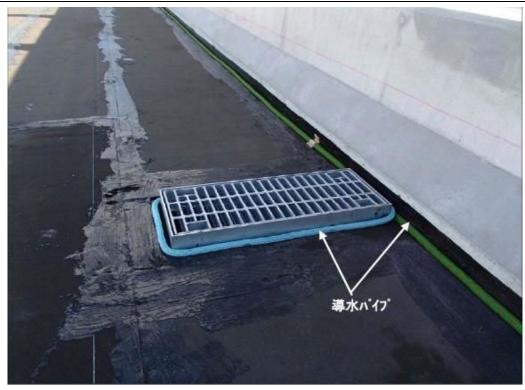



写真-1 導水パイプの端部設置と排水枡との接続状況



写真-2 排水孔への設置状況



写真-3 排水枡への設置状況

エ	種	舗 設 準 備
番号	1	伸縮装置や後打ちコンクリートを適切に保護しているか
,		

状 況 写 真



写真-1 基層工(表層工)施工時の伸縮装置の保護例 (端部段差に角木材、伸縮装置全体にブルーシート+コームマット設置)



写真-2 防水シートを保護した例

エ 種	舗 設 準 備
番号 ②	防水シート上を施工機械が移動する時、こぼれた合材や異物を清掃しているか



写真-1 ダンプがこぼしたAS 合材の清掃状況(基層工施工中)



写真-2 タイヤに付着し持ち込んだ小石等の清掃 プラント~舗設場所までの合材運搬ルートに 砂利道等がある場合要注意



写真-3 基層定規型枠を撤去後のAS 清掃



写真-4 簡易清掃機による清掃状況

エ	種	舗 設 準 備
番号	3	成形目地用のプライマーは隙間なく散布されているか

状 況 写 真



写真-1 基層エ+表層エの高さまで端部にプライマーを塗布した状況

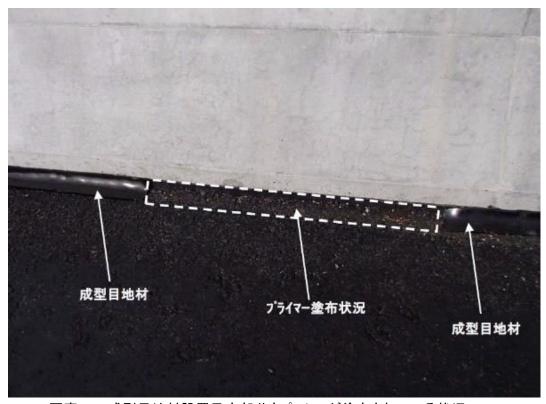



写真-2 成型目地材設置予定部分もプライマーが塗布されている状況

エ	種	舗 設 準 備
番号	5	基層施工前に貼り付ける成形目地材は剥がれたり、隙間なく貼られているか



写真-1 成型目地材設置状況(地覆側)



写真-2 成型目地材(近接) 幅 30mm 厚さ5mm



写真-3 成型目地材の設置状況(3月下旬:表層工直前) 冬期に比較し目地材が溶解気味になり付着しやすい

エ	種	舗 設 準 備
番号	6	成形目地材の継ぎ目は重ねて貼っているか。また縦断勾配の高い方が上に重ねているか。



写真-1 成型目地材の重ね継手状況

番号 ⑦ 基層の定規型枠は防水シートを傷つけないように釘固定はしていないか。	エ	種	舗 設 準 備
	番号	7	基層の定規型枠は防水シートを傷つけないように釘固定はしていないか。

状 況 写 真



写真-1 定規型枠の継目を重りで(約 5kg)押さえている例



写真-2 タイヤローラ、マカダムローラにて転圧作業(定規型枠の動きはなし)

エ	種	舗 設 準 備
番号	8	使用するアスファルトフィニッシャーのタイヤにアスファルト等が付着していないか。
11		



写真-1 基層工の施工状況

エ	種	舗装端部の転圧
番号	1	基層合材の到着、敷き均し、転圧の温度管理は適切か。



※:設定温度は参考値 施工時期:12 月末



写真-1 到着時再生密粒 13T 改質 II 型※170℃±10 実測値 169℃





写真-2 初期転圧時再生密粒 13T 改質 Ⅱ 型※155°C±10 実測値 164°C





写真-3 二次転圧時再生密粒 13T 改質Ⅱ型※105°C±25 実測値 95°C

エ	種	舗装端部の転圧
番号	2	表層合材の到着、敷き均し、転圧の温度管理は適切か。



※:設定温度は参考値 施工時期:1月末



写真-1 到着時再生密粒 13T 改質 II 型※170°C±10 実測値 174°C





写真-2 初期転圧時再生密粒 13T 改質 II 型※155℃±10 実測値 161℃

エ	種	舗装端部の転圧
番号	3	端部への合材の敷き均しは適切に行われているか。

状 況 写 真



写真-1 伸縮装置付近:後打ちコンの高さに合わるための調整用アスファルト





写真-2 中分開口部のコテ敷き均し状況



写真-3 路肩折れ端部のAsの散布による高さ調整(初期転圧後)

エ 科	重	舗装端部の転圧
番号	4	端部の転圧は適切に行われているか(必要に応じてプレートを使用する)

状 況 写 真



写真-1 分流ノーズ付近をプレートによる締め固め状況



写真-2 中央分離帯側開口部の締め固め状況



写真-3 路肩折れ端部の転圧状況(小型振動ローラーによる)

エ	種	舗装端部の転圧
番号	5	合材と成形目地材はしっかり一体化しているか

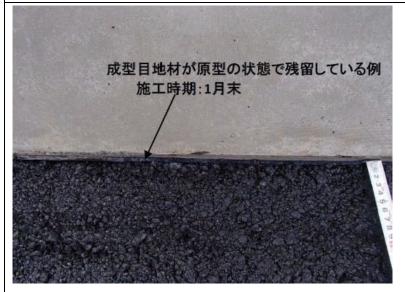



写真-1 舗設直後の成型目地材の一体化状態



写真-2 舗設直前の成型目地材



写真-3 ガスバーナーにて目地材を暖める(全景)



写真-4 ガスバーナーで暖め状況(近接)



写真-5 成型目地材が少し溶解されたところで舗設する



写真-6 成型目地材が表層合材の温度で一体化

# 4-(1). コンクリートの打込み管理表

#### コンクリート打込み管理表

#### 〇基本情報

路線・河川・地区等	工期	~
工事名		工区
構造物名		
構造物詳細	リフト名	

#### Oコンクリート

	呼び強度	N/mm ²	スラ	シプ	cm	骨材最大寸法	m	n
材料	水セメント比	%	単位	セメント量	kg/m ³			
	セメント種類		セメン	/ト会社				
配合	混和剤		混	和材				
	生コン工場							
	試料採取時期	打込み開始	台時	150m ³ 打込み	*時又は午後	300m ³ 打込み8	寺	試験許容值
	スランプ	cm		cm		cr	n	
品	空気量		%		%	%		
品質管理試験	塩化物イオン量		kg/m ³		kg/m ³	kį	g/m ³	kg/m ³ 以下
理	コンクリート温度		°C		°C	°C	;	
験	打込み時外気温		°C		°C	°C	;	
-	7日強度		$N/mm^2$		N/mm ²	N,	mm ²	
	28日強度		N/mm ²		N/mm ²	N,	mm ²	

#### 〇運搬・打込み・締固め

打込み日			天気		下側リフト打込み日	
型枠種類			下側リフト打継目処理			
THE HEAL	現場までの運搬時間	分	現場待機時間	分	荷卸し時間	分/台
運搬	現場内運搬方法		ポンプ圧送距離	m	ポンプ車台数	台
4-17 -	開始時刻		終了時刻			
打込み	リフト高	m	打込み量	m ³	打込み速度	m/h
締固め	パイプレータ台数	台	バイプレータ人数	人	パイプレータ予備	台
	ホース筒先	人				

#### 〇コンクリート温度履歴

初期温度	°C	最高温度	°C	温度上昇量	°C	
最高温度に到達	した時間	時間後	_			

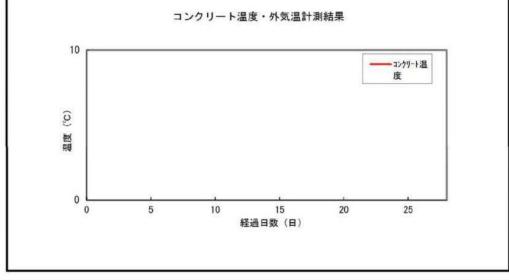
#### 〇養生

脱型日			残置期間	日
***	型枠面			
養生方法	打込み面			
養生(湿潤	状態)期間	日		

### コンクリート打込み管理表 (温度計測その1)

#### 基本情報

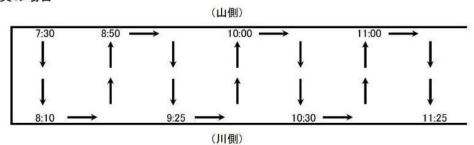
路線・河川・地区等	工期	~
工事名		IZ
構造物名		
構造物詳細	リフト名	


日時		天気	計測時刻	コンケリート温度	外気温	備考
2015/00/00				౪	ొ	打込み日の仕上げ時、又は、養生開 始時に1回計測することが望ましい
2015/00/00	朝			°C	°C	
(Annearon Annearon Marie Control	尽			ဗင	°C	
(月)	タ			°C	°C	
2015/00/00	朝			°C	°C	
	昼			°C	°C	
(火)	夕			°C	°C	
2015/00/00	朝			°C	°C	
	昼			°C	°C	
(水)	タ			°C	°C	
2015/00/00	朝			్థి	°C	1
	昼			°C	°C	
(木)	9			°C	°C	
2015/00/00	朝			ိုင	°C	
/100/14/10/10/10/10/10/10/10/10/10/10/10/10/10/	昼			°C	°C	_
(金)	9			°C	°C	
2015/00/00	朝			ိုင	ిం	
D-525, C1, 78, 77, 152, 152, 153, 153	昼			°C	°C	
(土)	9			ొ	°C	
2015/00/00	朝			°C	°C	
Describer Meditar Manager	昼			ొ	°C	_
(日)	9			్లి	°C	
2015/00/00	朝			°C	°C	<u></u>
41 150	昼			°C	°C	
(月)	9			°C	°C	
2015/00/00	朝	_		ి ల	°C	_
	昼			℃	°C	_
(火)	夕	_		°C	°C	
2015/00/00	朝日			ာိ ပ	°C °C	-
(74)	昼夕			°C	°C	_
(水)				ొ	℃	+
2015/00/00	朝			°C	ల	
(木)	昼夕		-	°C	°C	-
	朝		0	°C	°C	
2015/00/00				°C	°C	
(4)	<u>屋</u>			°C	°C	-
(金)				°C	°C	+
2015/00/00	朝昼			°C	°C	
(±)	<u>単</u> タ		2	°C	ి ర	-
				ి లా	°C	
2015/00/00	朝					
65 000	昼			°C	°C	
(日)	夕			°C	°C	

#### コンクリート打込み管理表 (温度計測その2)

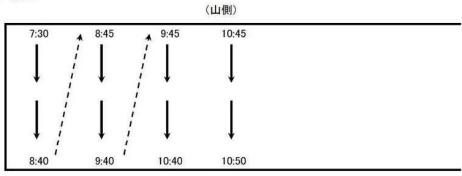
#### 〇基本情報

路線・河川・地区等	工期	~
工事名	<u> </u>	工区
構造物名		
構造物詳細	リフト名	


口時		天気	計測時刻	コンクリート温度	外気温	備考
2015/00/00	朝			°C	°C	
	昼			°C	°C	
(月)	9			°C	°C	
2015/00/00	朝昼夕			°C	°C	
	昼			°C	°C	
(火)	タ			°C	°C	
2015/00/00	朝			°C	°C	
	昼			°C	°C	
(7K)	9			°C	°C	
2015/00/00	朝			°C	°C	
12011-120	昼			°C	°C	1
(木)	9			°C	°C	
2015/00/00	朝			°C	°C	
2015/00/00	昼			°C	°C	
(金)	9			°C	°C	
	朝			°C	°C	
2015/00/00	昼			°C	°C	1
(土)	タ			°C	°C	
	朝			°C	°C	
2015/00/00	昼			°C	°C	1
(日)	9			°C	°C	1
	朝			°C	°C	
2015/00/00	昼			°C	°C	1
(月)	9			°C	°C	
	朝			°C	°C	
2015/00/00	昼			°C	°C	1
(火)	9			°C	°C	1
	朝			°C	°C	
2015/00/00	昼			°C	°C	1
(水)	9			°C	°C	1



### 4-(2). コンクリートの打重ね管理表


### 打重ね管理表の例

#### 標準幅員の場合



山側打雪	直ね時間		打込み時間	山側打重ね時間			
目標時間	実測時間	山側	打込み方向	川側	実測時間	目標時間	
(120分)	(分)	(00:00)	打込み万円	(00:00)	(分)	(120分)	
		7:30		0_HH			
OK	1:20	100,000,000		8:10	Standardov		
ок	1:10	8:50		9:25	1:15	OK	
OK	1.10	10:00		9.23	1:05	ок	
OK	1:00			10:30	1.00	Oit	
		11:00	<		0:55		
				11:25			
-			<				

#### 高幅員の場合



(川側)

山側打雪	重ね時間		打込み時間	山側打重ね時間				
目標時間 (120分)	実測時間	山側	打込み方向	川側(00:00)	実測時間	目標時間 (120分)		
(ASSERTING)		7:30						
OK	1:15	8:45	***************************************	A 100 000 0000 0000 0000 0000 0000 0000	1:00	ок		
OK	1:00	9:45	***************************************	9:40	1:00	ок		
OK	1:00	10:45		10:40	1:10			
				11:50				
				-				

# 4-(3). 表層透気試験記録

表層透気試験記録												
構造物名: 測定箇所: 打設日: 別定時のコンクリートの材質 脱型時のコンクリートの材質 コンクリートの養生条件: コンクリートの追加養生:		測定者氏名: 測定日時·時間: 測定時天候: 測定時気温: 測定時湿度:										
測定箇所番号												
コンクリートの含水率	%											
表層透気係数(KT値)	× 10 ⁻¹⁶ m [°]											
測定深さ	cm											
判定	グレード											
備考												
【構造物概略図】 ※構造物の測定箇所が分かるよう、手書きでポンチ絵を記載。 N												
		W		E								
正面図 【表面状況写真】			S 平 <b>面</b> 図									
【双四八八子来】												

# 4-(4). 表面吸水試験記録

表面吸水試験詞	己録			/ <b>頁</b>				
構造物名: 測定箇所: 打設日: 測定時のコンクリートの材 脱型時のコンクリートの材 コンクリートの養生条件: コンクリートの追加養生:		測定者氏名: 測定日時·時間: 測定時天候: 測定時気温: 測定時湿度:						
測定箇所番号								
水の温度(試験に使用する水)	度							
コンクリートの含水率	%							
表面吸水速度(P600)	ml/ <b>m</b> t/s							
10分間の総吸水量	ml							
判定	グレード							
備考								
【構造物概略図】 ※構造物の測定箇所が分かるよう	)、手書きでオ	ペンチ絵を記載。	N					
		W		E				
正面図 【表面状況写真】		S 平面図						

# 4-(5). ひび割れ調査票

	ひひ割れ調食票(1)	
工 事 名		
請負者名		
構造物名	(工種・種別・細別等構造物が判断出来る名称)	
現 場 代 理 人 名		
主任技術者名		
監理技術者名		
測定者名		
位 置	測定No	
構造物形式		
構造物寸法		
竣工年月日	平成 年 月 日	
適用仕様書		
コンクリート の 種 類		
コンクリートの 設計基準強度	N / mm2 コンクリートの 呼び強度	N/mm2
海岸からの距離	海上、海岸沿い、海岸から Km	
周辺環境①	工場、住宅・商業地、農地、山地、その他(	)
周辺環境②	普通地、雪寒地、その他(	)
直下周辺環境	河川・海、道路、その他(	)
	構造物位置図(1/50、000を標準とする)	
	添付しない場合は	
	(別添資料一〇参照) と記入し、資料提出	

### ひび割れ調査票(2)

	+# *# +6 AD GO
	構造物一般図
	まけしたい 担合け
	添付しない場合は
	(別添資料一〇参照)と記入し、
	資料提出
d _i .	

# ひび割れ調査票(3)

ひび割れ総延長 約 m
1995 P. 1995 P
最大ひび割れ幅(○で囲む)
0.2mm以下、0.3mm以下
0.4mm以下、0.5mm以下
0.6mm以下、0.8mm以下
m
発生時期(〇で囲む)
数時間~1日、数日、数10日以上、不明
規則性:有・無
形態:網状、表層、貫通、表層or貫通
方向:主鉄筋方向、直角方向、両方向
鉄筋とは無関係

# ひび割れ調査票(4)

ひび割れ発生状況のス	スケッチ図
Live for the first of the first	X . I
添付しない場合	かけ は
(別添資料一〇参照)	と記入し、
資料提出	
I .	

### ひび割れ調査票(5)

構造物名 (工種・種別・細別等構造物が判断出来る名称)

ひび割れ発生箇所の写真 添付しない場合は (別添資料一〇参照) と記入し、 資料提出

ШX
יאווי
ıχ
#¥
ш.
liinti
質記録表
诟
,
÷
1
_
-`
0
`
٠١
П
ii)
₩

- (	6	)		=	1 )	ار	י ל	J-	_	۲	の	酉	]슨	計	₹		
	攉	膨															
	日	無															
	JISTL場 部内の 有無無																
		会社名															
_	十一年二十	8) 第															
	リコングー	策 総アルカリ書 t (kg/m3)															
	アルカ	哲無対策 の方珠	添加 方法														
		混和剤③	添加量 添 kg/m3 方														
		煕	種類														
		混和剤②	添加量 添加 kg/m3 方法														
·		源	稚類														
量 (kg/m³)		混和剤①	sto.//li 量。 方法														
		混	種類														
単 位		混和材	使用量 kg/m3														
am).	争林	(e)	G3 種類														
	骨材  粗	(8)	G2														
	H骨材	Θ	G1														
	<b>組骨材</b>	(e)	S3														
	<b>組骨材</b>	(3)	\$2														
	維申材	Θ	S1														
	5	× × ¥	i c														
			種類														
	14字	e H	, W														
į	神神	w/c s/a	(%) (%)														
	別を重要の発生を表する		6) (%)														
	が配置		(cm) (6														
	村大:	挺	(mm) (c														
東	基準 報	度	mm²) (n														
3	素素	型型型	$(N/mm^2)$ $(N/mm^2)$														
避	A   A   A   A   A   A   A   A   A   A	5 ±	(N/m														
	17×	π _ ⊠															1
	1746	年回物の部化															中口り
		種類															お口は国行力を持つだされ
	構造物の権名称																五二日
		海下															(1)
																	•

・構造物の部位は、構造物の種類より詳細な(フーチング、柱部など)部位を記入する。構造物の種類より詳細な指定ができない場合は、構造物の種類でよい。
・レディーミクストコンクリート区分は、レディーミクストコングリート標準仕様基準に示す区分番号を記入する。
・セズトの種類には、セズト名(N、H、BB等 JIS A5308かセズトの種類による区分上の記号)を記入。
・現本材には、配合容積に算入する(高戸メラダ労機が来、フライアッシュなど)銀和材料の種類、使用量を記入する。
・現和材には、配合容積に算入する(高戸メラダ労機が来、フライアッシュなど)銀和材料の種類、使用量を記入する。
・現和利には、配合容積に算入しない(AE剤、AE)域を対象がとり、現和材料の種類、添加方法を記入する。
・アルカリ骨材反応抑制対策を実施している場合には、その対策方法を記入する。
・アルカリ骨材反応抑制対策を実施している場合には、その対策方法を記入する。

(出典)「建設材料の品質記録保存業務実施要領(案)」による。

4 —	(	(7) 受入れ検査の記録																
		座																
		攉																
	水量	単位水量 kg																
年     度       加工業者	現場単位水量	測定方法																
4 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	コンクリート中	植行参霧喇 (kg/m3)																•
		試験個数型																
	気量(%)	最小																
	캢	最大																
	(u	試験個数																
	ンプ (cm)	最小試																
	X	最大																
		試験個数																
	V/mm ² )	平均一試																
	σ 28 強度 (N/mm²)	最小																
		最大																
		試験個数																
		平																3入する。
	$\sigma$ (x) (N/mm ² )	最小																-の回を計
	κ) ο	最大																3合は、そ
		本本																わたる場
	<b>√</b> п	強 康 (N/mm²)																り打設に
	設計基準面	強 (N/mm ² ) (N																複数回の
	び一般																	でかり
	世	想区														_		具体的
		打製品																柱部等、
		構造物の部位																(注)・構造物の部位は、フーチング、柱部等、具体的でかつ複数回の打設にわたる場合は、その回を記入する。
		電類 権																部位は、
	44	章 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8																青造物の
		# 															<u> </u>	(世)

・呼び強度は、JIS A5308(当該年度のもの)適用。 ・配合強度は、JIS A5308(当該年度のもの)適用。 ・配合強度は、JIS A5308(当該年考慮して各生コングリート工場で定めている強度。 ・a (x)内の強度欄は、a 28以外の場合に使用する。"X、に呼び強度を保証する材齢を記入し、数値を入力する。 ・コンクリート舗装の場合は、曲げ強度を a 3800欄に記入する。 ・試験個数が10個以上になる場合には、別途工程能力表を作成する。 ・な3強度は、呼び強度毎の試験結果とする。 ・発発度和剤を用いた場合は添加線のスランプ、空気量を()書きで上段に記入。 ・特殊指和剤を用いた場合は添加線のスランプ、空気量を()書きで上段に記入。 ・コンクリート中の加度化物を量規制基準(土木構造物)実施要領に基づき測定された、塩化物量の測定結果を記入する。 ・現場において測定したコンクリート中の単位水量について測定方法及び値を記入する。 ・現場において測定したコンクリート中の単位水量について測定方法及び値を記入する。

180

4 -	- (	8	) .	 <b>†</b> ],	<u> </u>	ナ、	đ	Э c	۲ (	<b>少</b> 金	ĽŚ	<b>二</b> ノ.	)	Ţυ.	ノロロ	沙沙	₹
	圏																
	LA M																
年       本       基       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B    <	加工地元																
	特殊型枠																
	養生日数	(H)															
	養成方法																
	打設方法																
	養生気温(最低)																
	養生気温(最高)																
	打散気温(最高) 打散気温(最低) 養生気温(最高)																
	打設気温(最高)																
	打設数量																
	ポンプ圧送高さ ポンプ圧送距離 ポンプ使用管径	(mm & )															Š,
	ポンプ圧送距離	(III)															との種類を記入す
		(III)															用した場合は、そ
	打設日(AM.PM)																・番号欄は、図面的角盤等を記入する。 ・打弦過程は、打弦時に測定した外条温を記入する。 ・打弦方法は、ボン子形弦の場合のが記入。 ・打弦方法は、ボンイが窓の場合のが記入。 ・様立方法は、湿土、がかった、ボンブ打窓等を記入。 ・様立方式は、湿潤、維決、電熱養成等を記入。 ・様生日数は、脱型までの日報を記入する。 ・・特殊型体にズリンテプィーム、粗核型体、高水、吸水型体等)を使用した場合は、その種類を記入する。 「建設材料の品質」を探検を減変速要領(案)」による。
	構造物の部位																・帯与欄は、因而対象番号を記入、 抗関値は、打般地に別立した外気温を記入する。 ・打形立指は、シュート、パケットがデンド形等を記入、 ・打形方指は、シュート、パケットがデンド形等を記入。 ・投放方指は、線は、艦炸機をを記入。 ・保温業生を行った場合は、保温期間の養生気 ・株理・機工・機型は、大型・大型、 ・株理・機工・大型・大型、 ・株理・機工・大型・大型、 ・株理・大型・大型・大型、 ・株型体がから出質に解析、 ・様子・大型・大型・大型、 ・様子・大型・大型・大型、 ・様子・大型・大型・大型、 ・様子・大型・大型・大型・大型、 ・様子・大型・大型・大型・大型、 ・様子・大型・大型・大型・大型、 ・様子・大型・大型・大型・大型・大型・ ・様子・大型・大型・大型・大型・ ・様子・大型・大型・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子・大型・ ・様子 中国・ ・様子 中国・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
	構造物の名称構造物の種類																面対象番号を記し   打設時に測定した   よ、ボンブ打設の基   ジュート、バケット   福浦、練政、電線   借った場合は、   抗型までの日   2 対ップフォーム、   2 質記録保存業務
	号構造物の名称																
	梅																(知)